Previous |  Up |  Next

Article

Title: Triple automorphisms of simple Lie algebras (English)
Author: Wang, Dengyin
Author: Yu, Xiaoxiang
Language: English
Journal: Czechoslovak Mathematical Journal
ISSN: 0011-4642 (print)
ISSN: 1572-9141 (online)
Volume: 61
Issue: 4
Year: 2011
Pages: 1007-1016
Summary lang: English
.
Category: math
.
Summary: An invertible linear map $\varphi $ on a Lie algebra $L$ is called a triple automorphism of it if $\varphi ([x,[y,z]])=[\varphi (x),[ \varphi (y),\varphi (z)]]$ for $\forall x, y, z\in L$. Let $\frak {g}$ be a finite-dimensional simple Lie algebra of rank $l$ defined over an algebraically closed field $F$ of characteristic zero, $\mathfrak {p}$ an arbitrary parabolic subalgebra of $\mathfrak {g}$. It is shown in this paper that an invertible linear map $\varphi $ on $\mathfrak {p}$ is a triple automorphism if and only if either $\varphi $ itself is an automorphism of $\mathfrak {p}$ or it is the composition of an automorphism of $\mathfrak {p}$ and an extremal map of order $2$. (English)
Keyword: simple Lie algebras
Keyword: parabolic subalgebras
Keyword: triple automorphisms of Lie algebras
MSC: 17B20
MSC: 17B30
MSC: 17B40
idZBL: Zbl 1249.17026
idMR: MR2886252
DOI: 10.1007/s10587-011-0043-9
.
Date available: 2011-12-16T15:42:46Z
Last updated: 2020-07-03
Stable URL: http://hdl.handle.net/10338.dmlcz/141802
.
Reference: [1] Humphreys, J. E.: Introduction to Lie algebras and representation theory.Graduate Texts in Mathematics 9, New York-Heidelberg-Berlin, Springer-Verlag (1972). Zbl 0254.17004, MR 0499562
Reference: [2] Ji, P., Wang, L.: Lie triple derivations of TUHF algebras.Linear Algebra Appl. 403 (2005), 399-408. Zbl 1114.46048, MR 2140293, 10.1016/j.laa.2005.02.004
Reference: [3] Lu, F.-Y.: Lie triple derivations on nest algebras.Math. Nach. 280 (2007), 882-887. Zbl 1124.47054, MR 2326061, 10.1002/mana.200410520
Reference: [4] Miers, C. R.: Lie triple derivations of von Neumann algebras.Proc. Am. Math. Soc. 71 (1978), 57-61. Zbl 0384.46047, MR 0487480, 10.1090/S0002-9939-1978-0487480-9
Reference: [5] Li, Q.-G., Wang, H.-T.: Lie triple derivation of the Lie algebra of strictly upper triangular matrix over a commutative ring.Linear Algebra Appl. 430 (2009), 66-77. Zbl 1163.17014, MR 2460499
Reference: [6] Cao, H.-X., Wu, B.-W., Zhang, J.-H.: Lie triple derivations of nest algebras.Linear Algebra Appl. 416 (2006), 559-567. Zbl 1102.47060, MR 2242444, 10.1016/j.laa.2005.12.003
.

Files

Files Size Format View
CzechMathJ_61-2011-4_11.pdf 268.2Kb application/pdf View/Open
Back to standard record
Partner of
EuDML logo