Previous |  Up |  Next

Article

Title: The cubic mapping graph for the ring of Gaussian integers modulo $n$ (English)
Author: Wei, Yangjiang
Author: Nan, Jizhu
Author: Tang, Gaohua
Language: English
Journal: Czechoslovak Mathematical Journal
ISSN: 0011-4642 (print)
ISSN: 1572-9141 (online)
Volume: 61
Issue: 4
Year: 2011
Pages: 1023-1036
Summary lang: English
.
Category: math
.
Summary: The article studies the cubic mapping graph $\Gamma (n)$ of $\mathbb {Z}_n[{\rm i}]$, the ring of Gaussian integers modulo $n$. For each positive integer $n>1$, the number of fixed points and the in-degree of the elements $\overline 1$ and $\overline 0$ in $\Gamma (n)$ are found. Moreover, complete characterizations in terms of $n$ are given in which $\Gamma _{2}(n)$ is semiregular, where $\Gamma _{2}(n)$ is induced by all the zero-divisors of $\mathbb {Z}_n[{\rm i}]$. (English)
Keyword: Gaussian integers modulo $n$
Keyword: cubic mapping graph
Keyword: fixed point
Keyword: semiregularity
MSC: 05C05
MSC: 11A07
MSC: 13M05
idZBL: Zbl 1249.05061
idMR: MR2886254
DOI: 10.1007/s10587-011-0045-7
.
Date available: 2011-12-16T15:44:17Z
Last updated: 2020-07-03
Stable URL: http://hdl.handle.net/10338.dmlcz/141804
.
Reference: [1] Osba, E. Abu, Henriksen, M., Alkam, O., Smith, F. A.: The maximal regular ideal of some commutative rings.Commentat. Math. Univ. Carol. 47 (2006), 1-10. MR 2223962
Reference: [2] Cross, J.: The Euler $\phi$-function in the Gaussian integers.Am. Math. Mon. 90 (1983), 518-528. Zbl 0525.12001, MR 0717096, 10.2307/2322785
Reference: [3] Pan, C. D., Pan, C. B.: Elementary Number Theory (2nd edition).Beijing University Publishing Company Beijing (2005), Chinese.
Reference: [4] Skowronek-Kaziów, J.: Properties of digraphs connected with some congruence relations.Czech. Math. J. 59 (2009), 39-49. MR 2486614, 10.1007/s10587-009-0003-9
Reference: [5] Skowronek-Kaziów, J.: Some digraphs arising from number theory and remarks on the zero-divisor graph of the ring $\mathbb Z_n$.Inf. Process. Lett. 108 (2008), 165-169. MR 2452147, 10.1016/j.ipl.2008.05.002
Reference: [6] Somer, L., Křížek, M.: On a connection of number theory with graph theory.Czech. Math. J. 54 (2004), 465-485. MR 2059267, 10.1023/B:CMAJ.0000042385.93571.58
Reference: [7] Su, H. D., Tang, G. H.: The prime spectrum and zero-divisors of $\mathbb Z_n[i]$.J. Guangxi Teach. Edu. Univ. 23 (2006), 1-4.
Reference: [8] Tang, G. H., Su, H. D., Yi, Z.: The structure of the unit group of $\mathbb Z_n[i]$.J. Guangxi Norm. Univ., Nat. Sci. 28 (2010), 38-41.
Reference: [9] Wei, Y. J., Nan, J. Z., Tang, G. H., Su, H. D.: The cubic mapping graphs of the residue classes of integers.Ars Combin. 97 (2010), 101-110. MR 2732885
.

Files

Files Size Format View
CzechMathJ_61-2011-4_13.pdf 308.3Kb application/pdf View/Open
Back to standard record
Partner of
EuDML logo