| Title: | The cubic mapping graph for the ring of Gaussian integers modulo $n$ (English) | 
| Author: | Wei, Yangjiang | 
| Author: | Nan, Jizhu | 
| Author: | Tang, Gaohua | 
| Language: | English | 
| Journal: | Czechoslovak Mathematical Journal | 
| ISSN: | 0011-4642 (print) | 
| ISSN: | 1572-9141 (online) | 
| Volume: | 61 | 
| Issue: | 4 | 
| Year: | 2011 | 
| Pages: | 1023-1036 | 
| Summary lang: | English | 
| . | 
| Category: | math | 
| . | 
| Summary: | The article studies the cubic mapping graph  $\Gamma (n)$ of $\mathbb {Z}_n[{\rm i}]$, the ring of Gaussian integers modulo  $n$. For each positive integer $n>1$, the number of fixed points and the in-degree of the elements  $\overline 1$ and $\overline 0$ in $\Gamma (n)$ are found. Moreover, complete characterizations in terms of  $n$ are given in which $\Gamma _{2}(n)$  is semiregular, where $\Gamma _{2}(n)$ is induced by all the zero-divisors of $\mathbb {Z}_n[{\rm i}]$. (English) | 
| Keyword: | Gaussian integers modulo  $n$ | 
| Keyword: | cubic mapping graph | 
| Keyword: | fixed point | 
| Keyword: | semiregularity | 
| MSC: | 05C05 | 
| MSC: | 11A07 | 
| MSC: | 13M05 | 
| idZBL: | Zbl 1249.05061 | 
| idMR: | MR2886254 | 
| DOI: | 10.1007/s10587-011-0045-7 | 
| . | 
| Date available: | 2011-12-16T15:44:17Z | 
| Last updated: | 2020-07-03 | 
| Stable URL: | http://hdl.handle.net/10338.dmlcz/141804 | 
| . | 
| Reference: | [1] Osba, E. Abu, Henriksen, M., Alkam, O., Smith, F. A.: The maximal regular ideal of some commutative rings.Commentat. Math. Univ. Carol. 47 (2006), 1-10. MR 2223962 | 
| Reference: | [2] Cross, J.: The Euler $\phi$-function in the Gaussian integers.Am. Math. Mon. 90 (1983), 518-528. Zbl 0525.12001, MR 0717096, 10.2307/2322785 | 
| Reference: | [3] Pan, C. D., Pan, C. B.: Elementary Number Theory (2nd edition).Beijing University Publishing Company Beijing (2005), Chinese. | 
| Reference: | [4] Skowronek-Kaziów, J.: Properties of digraphs connected with some congruence relations.Czech. Math. J. 59 (2009), 39-49. MR 2486614, 10.1007/s10587-009-0003-9 | 
| Reference: | [5] Skowronek-Kaziów, J.: Some digraphs arising from number theory and remarks on the zero-divisor graph of the ring $\mathbb Z_n$.Inf. Process. Lett. 108 (2008), 165-169. MR 2452147, 10.1016/j.ipl.2008.05.002 | 
| Reference: | [6] Somer, L., Křížek, M.: On a connection of number theory with graph theory.Czech. Math. J. 54 (2004), 465-485. MR 2059267, 10.1023/B:CMAJ.0000042385.93571.58 | 
| Reference: | [7] Su, H. D., Tang, G. H.: The prime spectrum and zero-divisors of $\mathbb Z_n[i]$.J. Guangxi Teach. Edu. Univ. 23 (2006), 1-4. | 
| Reference: | [8] Tang, G. H., Su, H. D., Yi, Z.: The structure of the unit group of $\mathbb Z_n[i]$.J. Guangxi Norm. Univ., Nat. Sci. 28 (2010), 38-41. | 
| Reference: | [9] Wei, Y. J., Nan, J. Z., Tang, G. H., Su, H. D.: The cubic mapping graphs of the residue classes of integers.Ars Combin. 97 (2010), 101-110. MR 2732885 | 
| . |