Title:
|
On chirality groups and regular coverings of regular oriented hypermaps (English) |
Author:
|
Breda d'Azevedo, Antonio |
Author:
|
Rodrigues, Ilda Inácio |
Author:
|
Fernandes, Maria Elisa |
Language:
|
English |
Journal:
|
Czechoslovak Mathematical Journal |
ISSN:
|
0011-4642 (print) |
ISSN:
|
1572-9141 (online) |
Volume:
|
61 |
Issue:
|
4 |
Year:
|
2011 |
Pages:
|
1037-1047 |
Summary lang:
|
English |
. |
Category:
|
math |
. |
Summary:
|
We prove that if the Walsh bipartite map $\mathcal {M}=\mathcal {W}(\mathcal {H})$ of a regular oriented hypermap $\mathcal {H}$ is also orientably regular then both $\mathcal {M}$ and $\mathcal {H}$ have the same chirality group, the covering core of $\mathcal {M}$ (the smallest regular map covering $\mathcal {M}$) is the Walsh bipartite map of the covering core of $\mathcal {H}$ and the closure cover of $\mathcal {M}$ (the greatest regular map covered by $\mathcal {M}$) is the Walsh bipartite map of the closure cover of $\mathcal {H}$. We apply these results to the family of toroidal chiral hypermaps $(3,3,3)_{b,c}=\mathcal {W}^{-1}\{6,3\}_{b,c}$ induced by the family of toroidal bipartite maps $\{6,3\}_{b,c}$. (English) |
Keyword:
|
hypermap |
Keyword:
|
regular covering |
Keyword:
|
chirality group |
Keyword:
|
chirality index |
Keyword:
|
toroidal hypermaps |
MSC:
|
05C10 |
MSC:
|
05C25 |
MSC:
|
20B25 |
MSC:
|
20F65 |
MSC:
|
51E30 |
MSC:
|
57M07 |
MSC:
|
57M60 |
idZBL:
|
Zbl 1249.05086 |
idMR:
|
MR2886255 |
DOI:
|
10.1007/s10587-011-0046-6 |
. |
Date available:
|
2011-12-16T15:45:28Z |
Last updated:
|
2020-07-03 |
Stable URL:
|
http://hdl.handle.net/10338.dmlcz/141805 |
. |
Reference:
|
[1] Breda, A., d'Azevedo, A. Breda, Nedela, R.: Chirality group and chirality index of Coxeter chiral maps.Ars Comb. 81 (2006), 147-160. MR 2267808 |
Reference:
|
[2] d'Azevedo, A. Breda: A theory of restricted regularity of hypermaps.J. Korean Math. Soc. 43 (2006), 991-1018. MR 2303613, 10.4134/JKMS.2006.43.5.991 |
Reference:
|
[3] d'Azevedo, A. Breda, Jones, G. A.: Double coverings and reflexive abelian hypermaps.Beitr. Algebra Geom. 41 (2000), 371-389. MR 1801428 |
Reference:
|
[4] d'Azevedo, A. Breda, Jones, G., Nedela, R., Škoviera, M.: Chirality groups of maps and hypermaps.J. Algebr. Comb. 29 (2009), 337-355. MR 2496311, 10.1007/s10801-008-0138-z |
Reference:
|
[5] d'Azevedo, A. Breda, Nedela, R.: Chiral hypermaps of small genus.Beitr. Algebra Geom. 44 (2003), 127-143. MR 1990988 |
Reference:
|
[6] Corn, D., Singerman, D.: Regular hypermaps.Eur. J. Comb. 9 (1988), 337-351. Zbl 0665.57002, MR 0950053, 10.1016/S0195-6698(88)80064-7 |
Reference:
|
[7] Coxeter, H. S. M., Moser, W. O. J.: Generators and Relations for Discrete Groups 4th ed.Ergebnisse der Mathematik und ihrer Grenzgebiete, Bd. 14. Springer-Verlag, Berlin/Heidelberg/New York (1980). Zbl 0422.20001, MR 0562913 |
Reference:
|
[8] Garbe, D.: Über die regulären Zerlegungen geschlossener orientierbarer Flächen.J. Reine Angew. Math. 237 (1969), 39-55. Zbl 0176.22203, MR 0246198 |
Reference:
|
[9] Johnson, D. L.: Presentations of Groups.London Mathematical Society Student Texts 15, Cambridge University Press, Cambridge (1990). Zbl 0696.20027, MR 1056695 |
Reference:
|
[10] Jones, G. A.: Graph imbeddings, groups, and Riemann surfaces.Algebraic methods in graph theory, Conf. Szeged 1978, Colloq. Math. Soc. Janos Bolyai 25, North-Holland, Amsterdam (1981), 297-311. Zbl 0473.05028, MR 0642049 |
Reference:
|
[11] Jones, G. A., Singerman, D.: Maps, hypermaps and triangle groups.The Grothendieck theory of dessins d'enfants. Cambridge: Cambridge University Press. Lond. Math. Soc. Lect. Note Ser. 200 (1994), 115-145. Zbl 0833.20045, MR 1305395 |
Reference:
|
[12] Nostrand, B., Schulte, E., Weiss, A. I.: Constructions of chiral polytopes.Congr. Numerantium 97 (1993), 165-170. Zbl 0812.51017, MR 1267328 |
Reference:
|
[13] Schulte, E., Weiss, A. I.: Chiral polytopes.Applied geometry and discrete mathematics, Festschr. Victor Klee, DIMACS Ser. Discret. Math. Theor. Comput. Sci. 4 (1991), 493-516. Zbl 0741.51019, MR 1116373 |
Reference:
|
[14] Sherk, F. A.: A family of regular maps of type $\{6,6\}$.Can. Math. Bull. 5 (1962), 13-20. Zbl 0101.40902, MR 0137030, 10.4153/CMB-1962-003-7 |
Reference:
|
[15] Thomson, W.: The Robert Boyle Lecture, Oxford University Junior Scientific Club.May 16, 1893, reprinted in Baltimore Lectures (C. J. Clay & Sons, London, 1904). |
Reference:
|
[16] Walsh, T. R. S.: Hypermaps versus bipartite maps.J. Comb. Theory Ser. B 18 (1975), 155-163. Zbl 0302.05101, MR 0360328, 10.1016/0095-8956(75)90042-8 |
Reference:
|
[17] Wilson, S. E.: The smallest nontoroidal chiral maps.J. Graph Theory 2 (1978), 315-318. Zbl 0407.05027, MR 0512802, 10.1002/jgt.3190020405 |
. |