Previous |  Up |  Next

Article

Title: Concentrated monotone measures with non-unique tangential behavior in $\mathbb{R}^3$ (English)
Author: Černý, Robert
Author: Kolář, Jan
Author: Rokyta, Mirko
Language: English
Journal: Czechoslovak Mathematical Journal
ISSN: 0011-4642 (print)
ISSN: 1572-9141 (online)
Volume: 61
Issue: 4
Year: 2011
Pages: 1141-1167
Summary lang: English
.
Category: math
.
Summary: We show that for every $\varepsilon >0$ there is a set $A\subset \mathbb{R}^3$ such that ${\Cal H}^1\llcorner A$ is a monotone measure, the corresponding tangent measures at the origin are non-conical and non-unique and ${\Cal H}^1\llcorner A$ has the $1$-dimensional density between $1$ and $2+\varepsilon $ everywhere in the support. (English)
Keyword: monotone measure
Keyword: monotonicity formula
Keyword: tangent measure
MSC: 28A75
MSC: 49Q15
MSC: 53A10
idZBL: Zbl 1249.53006
idMR: MR2886262
DOI: 10.1007/s10587-011-0054-6
.
Date available: 2011-12-16T15:55:23Z
Last updated: 2020-07-03
Stable URL: http://hdl.handle.net/10338.dmlcz/141812
.
Reference: [1] Černý, R.: Local monotonicity of Hausdorff measures restricted to curves in $\mathbb R^n$.Commentat. Math. Univ. Carol. 50 (2009), 89-101. MR 2562806
Reference: [2] Černý, R., Kolář, J., Rokyta, M.: Monotone measures with bad tangential behavior in the plane.Commentat. Math. Univ. Carol. 52 (2011), 317-339. MR 2843226
Reference: [3] Kolář, J.: Non-regular tangential behaviour of a monotone measure.Bull. London Math. Soc. 38 (2006), 657-666. MR 2250758, 10.1112/S0024609306018637
Reference: [4] Mattila, P.: Geometry of Sets and Measures in Euclidean Spaces. Camridge Studies in Advanced Mathematics 44.Cambridge University Press Cambridge (1995). MR 1333890
Reference: [5] Preiss, D.: Geometry of measures in $\mathbb R^n$: Distribution, rectifiability and densities.Ann. Math. 125 (1987), 537-643. MR 0890162, 10.2307/1971410
Reference: [6] Simon, L.: Lectures on Geometric Measure Theory. Proc. C. M. A., Vol. 3.Australian National University Canberra (1983). MR 0756417
.

Files

Files Size Format View
CzechMathJ_61-2011-4_21.pdf 363.7Kb application/pdf View/Open
Back to standard record
Partner of
EuDML logo