Title:
|
Derivations with Engel conditions in prime and semiprime rings (English) |
Author:
|
Huang, Shuliang |
Language:
|
English |
Journal:
|
Czechoslovak Mathematical Journal |
ISSN:
|
0011-4642 (print) |
ISSN:
|
1572-9141 (online) |
Volume:
|
61 |
Issue:
|
4 |
Year:
|
2011 |
Pages:
|
1135-1140 |
Summary lang:
|
English |
. |
Category:
|
math |
. |
Summary:
|
Let $R$ be a prime ring, $I$ a nonzero ideal of $R$, $d$ a derivation of $R$ and $m, n$ fixed positive integers. (i) If $(d[x,y])^{m}=[x,y]_{n}$ for all $x,y\in I$, then $R$ is commutative. (ii) If $\mathop {\rm Char}R\neq 2$ and $[d(x),d(y)]_{m}=[x,y]^{n}$ for all $x,y\in I$, then $R$ is commutative. Moreover, we also examine the case when $R$ is a semiprime ring. (English) |
Keyword:
|
prime and semiprime rings |
Keyword:
|
ideal |
Keyword:
|
derivation |
Keyword:
|
GPIs |
MSC:
|
16N60 |
MSC:
|
16R50 |
MSC:
|
16U70 |
MSC:
|
16U80 |
MSC:
|
16W25 |
idZBL:
|
Zbl 1240.16048 |
idMR:
|
MR2886261 |
DOI:
|
10.1007/s10587-011-0053-7 |
. |
Date available:
|
2011-12-16T15:54:33Z |
Last updated:
|
2020-07-03 |
Stable URL:
|
http://hdl.handle.net/10338.dmlcz/141811 |
. |
Reference:
|
[1] Beidar, K. I., III, W. S. Martindale, Mikhalev, A. V.: Rings with Generalized Identities.Pure and Applied Mathematics, Marcel Dekker 196, New York (1996). MR 1368853 |
Reference:
|
[2] Bell, H. E., Daif, M. N.: On derivations and commutativity in prime rings.Acta Math. Hung. 66 (1995), 337-343. Zbl 0822.16033, MR 1314011, 10.1007/BF01876049 |
Reference:
|
[3] Bell, H. E., Daif, M. N.: On commutativity and strong commutativity-preserving maps.Can. Math. Bull. 37 (1994), 443-447. Zbl 0820.16031, MR 1303669, 10.4153/CMB-1994-064-x |
Reference:
|
[4] Chuang, Ch.-L.: GPIs having coefficients in Utumi quotient rings.Proc. Am. Math. Soc. 103 (1988), 723-728. Zbl 0656.16006, MR 0947646, 10.1090/S0002-9939-1988-0947646-4 |
Reference:
|
[5] Chuang, Ch.-L.: Hypercentral derivations.J. Algebra 166 (1994), 34-71. Zbl 0805.16035, MR 1276816, 10.1006/jabr.1994.1140 |
Reference:
|
[6] Lanski, Ch.: An Engel condition with derivation.Proc. Am. Math. Soc. 118 (1993), 731-734. Zbl 0821.16037, MR 1132851, 10.1090/S0002-9939-1993-1132851-9 |
Reference:
|
[7] Daif, M. N., Bell, H. E.: Remarks on derivations on semiprime rings.Int. J. Math. Math. Sci. 15 (1992), 205-206. Zbl 0746.16029, MR 1143947, 10.1155/S0161171292000255 |
Reference:
|
[8] Dhara, B., Sharma, R. K.: Vanishing power values of commutators with derivations.Sib. Math. J. 50 (2009), 60-65. Zbl 1205.16032, MR 2502875, 10.1007/s11202-009-0007-6 |
Reference:
|
[9] Erickson, T. S., III, W. S. Martindale, Osborn, J. M.: Prime nonassociative algebras.Pac. J. Math. 60 (1975), 49-63. MR 0382379, 10.2140/pjm.1975.60.49 |
Reference:
|
[10] Herstein, I. N.: Center-like elements in prime rings.J. Algebra 60 (1979), 567-574. Zbl 0436.16014, MR 0549949, 10.1016/0021-8693(79)90102-9 |
Reference:
|
[11] Jacobson, N.: Structure of Rings.Colloquium Publications 37, Am. Math. Soc. VII, Provindence, RI (1956). Zbl 0073.02002, MR 0081264 |
Reference:
|
[12] Kharchenko, V. K.: Differential identities of prime rings.Algebra Logic 17 (1979), 155-168. MR 0541758, 10.1007/BF01670115 |
Reference:
|
[13] Lin, J.-S., Liu, Ch.-K.: Strong commutativity preserving maps on Lie ideals.Linear Algebra Appl. 428 (2008), 1601-1609. Zbl 1141.16021, MR 2388643 |
Reference:
|
[14] Lee, T.-K.: Semiprime rings with differential identities.Bull. Inst. Math., Acad. Sin. 20 (1992), 27-38. Zbl 0769.16017, MR 1166215 |
Reference:
|
[15] Mayne, J. H.: Centralizing mappings of prime rings.Can. Math. Bull. 27 (1984), 122-126. Zbl 0537.16029, MR 0725261, 10.4153/CMB-1984-018-2 |
Reference:
|
[16] III, W. S. Martindale: Prime rings satisfying a generalized polynomial identity.J. Algebra 12 (1969), 576-584. MR 0238897, 10.1016/0021-8693(69)90029-5 |
Reference:
|
[17] Posner, E. C.: Derivations in prime rings.Proc. Am. Math. Soc. 8 (1958), 1093-1100. Zbl 0082.03003, MR 0095863, 10.1090/S0002-9939-1957-0095863-0 |
. |