Previous |  Up |  Next

Article

Title: Derivations with Engel conditions in prime and semiprime rings (English)
Author: Huang, Shuliang
Language: English
Journal: Czechoslovak Mathematical Journal
ISSN: 0011-4642 (print)
ISSN: 1572-9141 (online)
Volume: 61
Issue: 4
Year: 2011
Pages: 1135-1140
Summary lang: English
.
Category: math
.
Summary: Let $R$ be a prime ring, $I$ a nonzero ideal of $R$, $d$ a derivation of $R$ and $m, n$ fixed positive integers. (i) If $(d[x,y])^{m}=[x,y]_{n}$ for all $x,y\in I$, then $R$ is commutative. (ii) If $\mathop {\rm Char}R\neq 2$ and $[d(x),d(y)]_{m}=[x,y]^{n}$ for all $x,y\in I$, then $R$ is commutative. Moreover, we also examine the case when $R$ is a semiprime ring. (English)
Keyword: prime and semiprime rings
Keyword: ideal
Keyword: derivation
Keyword: GPIs
MSC: 16N60
MSC: 16R50
MSC: 16U70
MSC: 16U80
MSC: 16W25
idZBL: Zbl 1240.16048
idMR: MR2886261
DOI: 10.1007/s10587-011-0053-7
.
Date available: 2011-12-16T15:54:33Z
Last updated: 2020-07-03
Stable URL: http://hdl.handle.net/10338.dmlcz/141811
.
Reference: [1] Beidar, K. I., III, W. S. Martindale, Mikhalev, A. V.: Rings with Generalized Identities.Pure and Applied Mathematics, Marcel Dekker 196, New York (1996). MR 1368853
Reference: [2] Bell, H. E., Daif, M. N.: On derivations and commutativity in prime rings.Acta Math. Hung. 66 (1995), 337-343. Zbl 0822.16033, MR 1314011, 10.1007/BF01876049
Reference: [3] Bell, H. E., Daif, M. N.: On commutativity and strong commutativity-preserving maps.Can. Math. Bull. 37 (1994), 443-447. Zbl 0820.16031, MR 1303669, 10.4153/CMB-1994-064-x
Reference: [4] Chuang, Ch.-L.: GPIs having coefficients in Utumi quotient rings.Proc. Am. Math. Soc. 103 (1988), 723-728. Zbl 0656.16006, MR 0947646, 10.1090/S0002-9939-1988-0947646-4
Reference: [5] Chuang, Ch.-L.: Hypercentral derivations.J. Algebra 166 (1994), 34-71. Zbl 0805.16035, MR 1276816, 10.1006/jabr.1994.1140
Reference: [6] Lanski, Ch.: An Engel condition with derivation.Proc. Am. Math. Soc. 118 (1993), 731-734. Zbl 0821.16037, MR 1132851, 10.1090/S0002-9939-1993-1132851-9
Reference: [7] Daif, M. N., Bell, H. E.: Remarks on derivations on semiprime rings.Int. J. Math. Math. Sci. 15 (1992), 205-206. Zbl 0746.16029, MR 1143947, 10.1155/S0161171292000255
Reference: [8] Dhara, B., Sharma, R. K.: Vanishing power values of commutators with derivations.Sib. Math. J. 50 (2009), 60-65. Zbl 1205.16032, MR 2502875, 10.1007/s11202-009-0007-6
Reference: [9] Erickson, T. S., III, W. S. Martindale, Osborn, J. M.: Prime nonassociative algebras.Pac. J. Math. 60 (1975), 49-63. MR 0382379, 10.2140/pjm.1975.60.49
Reference: [10] Herstein, I. N.: Center-like elements in prime rings.J. Algebra 60 (1979), 567-574. Zbl 0436.16014, MR 0549949, 10.1016/0021-8693(79)90102-9
Reference: [11] Jacobson, N.: Structure of Rings.Colloquium Publications 37, Am. Math. Soc. VII, Provindence, RI (1956). Zbl 0073.02002, MR 0081264
Reference: [12] Kharchenko, V. K.: Differential identities of prime rings.Algebra Logic 17 (1979), 155-168. MR 0541758, 10.1007/BF01670115
Reference: [13] Lin, J.-S., Liu, Ch.-K.: Strong commutativity preserving maps on Lie ideals.Linear Algebra Appl. 428 (2008), 1601-1609. Zbl 1141.16021, MR 2388643
Reference: [14] Lee, T.-K.: Semiprime rings with differential identities.Bull. Inst. Math., Acad. Sin. 20 (1992), 27-38. Zbl 0769.16017, MR 1166215
Reference: [15] Mayne, J. H.: Centralizing mappings of prime rings.Can. Math. Bull. 27 (1984), 122-126. Zbl 0537.16029, MR 0725261, 10.4153/CMB-1984-018-2
Reference: [16] III, W. S. Martindale: Prime rings satisfying a generalized polynomial identity.J. Algebra 12 (1969), 576-584. MR 0238897, 10.1016/0021-8693(69)90029-5
Reference: [17] Posner, E. C.: Derivations in prime rings.Proc. Am. Math. Soc. 8 (1958), 1093-1100. Zbl 0082.03003, MR 0095863, 10.1090/S0002-9939-1957-0095863-0
.

Files

Files Size Format View
CzechMathJ_61-2011-4_20.pdf 226.2Kb application/pdf View/Open
Back to standard record
Partner of
EuDML logo