Previous |  Up |  Next

Article

Title: Reproducing kernels for Dunkl polyharmonic polynomials (English)
Author: Touahri, Kamel
Language: English
Journal: Commentationes Mathematicae Universitatis Carolinae
ISSN: 0010-2628 (print)
ISSN: 1213-7243 (online)
Volume: 53
Issue: 1
Year: 2012
Pages: 37-50
Summary lang: English
.
Category: math
.
Summary: In this paper, we compute explicitly the reproducing kernel of the space of homogeneous polynomials of degree $n$ and Dunkl polyharmonic of degree $m$, i.e. $\Delta_{k}^{m}u=0$, $m\in \mathbb{N}\setminus\{0\}$, where $\Delta_{k}$ is the Dunkl Laplacian and we study the convergence of the orthogonal series of Dunkl polyharmonic homogeneous polynomials. (English)
Keyword: Dunkl Laplacian
Keyword: reproducing kernel
MSC: 31B30
MSC: 33C55
idZBL: Zbl 1249.33011
idMR: MR2880909
.
Date available: 2012-02-07T10:22:15Z
Last updated: 2014-04-07
Stable URL: http://hdl.handle.net/10338.dmlcz/141824
.
Reference: [1] Dunkl C.F.: Differential-difference operators associated to reflection group.Trans. Amer. Math. Soc. 311 (1989), no. 1, 167–183. MR 0951883, 10.1090/S0002-9947-1989-0951883-8
Reference: [2] Dunkl C.F., Xu Y.: Orthogonal Polynomials of Several Variables.Cambridge Univ. Press, Cambridge, 2001. Zbl 0964.33001, MR 1827871
Reference: [3] Kuran Ü.: On Brelot-Choquet axial polynomials.J. London Math. Soc. (2) 4 (1971), 15–26. Zbl 0219.31013, MR 0293116, 10.1112/jlms/s2-4.1.15
Reference: [4] Mejjaoli H., Trimèche K.: On a mean value property associated with the Dunkl Laplacian operator and applications.Integral Transform. Spec. Funct. 12 (2001), no. 3, 279–302. MR 1872437, 10.1080/10652460108819351
Reference: [5] Ren G.B.: Almansi decomposition for Dunkl operators.Sci. China Ser. A 48 (2005), suppl., 333–342. Zbl 1131.43010, MR 2156514, 10.1007/BF02884718
Reference: [6] Render H.: Reproducing kernels for polyharmonic polynomials.Arch. Math. 91 (2008), 136–144. Zbl 1151.31007, MR 2430797, 10.1007/s00013-008-2447-9
Reference: [7] Rösler M.: Dunkl operators: theory and applications. Orthogonal polynomials and special functions.(Leuven, 2002), Lecture Notes in Mathematics, 1817, Springer, Berlin, 2003, pp. 93–135. MR 2022853, 10.1007/3-540-44945-0_3
Reference: [8] Rösler M.: Generalized Hermite polynomials and the heat equation for Dunkl operators.Comm. Math. Phys. 192 (1998), 519–542. MR 1620515, 10.1007/s002200050307
Reference: [9] Trimèche K.: The Dunkl intertwining operator on spaces of functions and distributions and integral representation of its dual.Integral Transform. Spec. Funct. 12 (2001), no. 4, 349–374. MR 1872375, 10.1080/10652460108819358
.

Files

Files Size Format View
CommentatMathUnivCarolRetro_53-2012-1_3.pdf 509.9Kb application/pdf View/Open
Back to standard record
Partner of
EuDML logo