[1] Antontsev, S. N., Kazhikhov, A. V., Monakhov, V. N.: 
Boundary Value Problems in Mechanics of Nonhomogeneous Fluids. North-Holland Amsterdam (1990). 
MR 1035212 | 
Zbl 0696.76001[3] Bebernes, J., Eberly, D.: 
Mathematical Problems from Combustion Theory. Springer New York (1989). 
MR 1012946 | 
Zbl 0692.35001[4] Chen, G.-Q.: 
Global solution to the compressible Navier-Stokes equations for a reacting mixture. SIAM J. Math. Anal. 23 (1992), 609-634. 
DOI 10.1137/0523031 | 
MR 1158824[5] Chen, G.-Q., Hoff, D., Trivisa, K.: 
Global solution to a model for exothermically reacting compressible flows with large discontinuous data. Arch. Ration. Mech. Anal. 166 (2003), 321-358. 
DOI 10.1007/s00205-002-0233-6 | 
MR 1961444[11] Song, J.: 
On initial boundary value problems for a viscous heat-conducting one-dimensional real gas. J. Differ. Equations 110 (1994), 157-181. 
DOI 10.1006/jdeq.1994.1064 | 
MR 1278368[13] Kazhikhov, A. V., Shelukhin, V. V.: 
Unique global solution with respect to time of the initial-boundary value problems for one-dimensional equations of a viscous gas. J. Appl. Math. Mech. 41 (1977), 282-291. 
DOI 10.1016/0021-8928(77)90011-9 | 
MR 0468593[15] Mihalas, D., Mihalas, B. Weibel: 
Foundations of Radiation Hydrodynamics. Oxford University Press New York (1984). 
MR 0781346[20] Williams, F. A.: Combustion Theory: The Fundamental Theory of Chemically Reacting Flow System. 2nd ed. Benjamin-Cummings Publ. Co. San Francisco (1985).
[21] Yanagi, S.: 
Asymptotic stability of the solutions to a full one-dimensional system of heat-conductive, reactive, compressible viscous gas. Japan J. Ind. Appl. Math. 15 (1998), 423-442. 
DOI 10.1007/BF03167320 | 
MR 1651737 | 
Zbl 0912.76077[22] Zel'dovich, Y. B., Raizer, Y. P.: Physics of Shock Waves and High-Temperature Hydrodynamic Phenomena, Vol. 2. Academic Press New Work (1967).