Previous |  Up |  Next


Title: Global existence of solutions for the 1-D radiative and reactive viscous gas dynamics (English)
Author: Zhang, Wen
Author: Zhang, Jianwen
Language: English
Journal: Applications of Mathematics
ISSN: 0862-7940 (print)
ISSN: 1572-9109 (online)
Volume: 57
Issue: 2
Year: 2012
Pages: 109-128
Summary lang: English
Category: math
Summary: In this paper, we prove the existence of a global solution to an initial-boundary value problem for 1-D flows of the viscous heat-conducting radiative and reactive gases. The key point here is that the growth exponent of heat conductivity is allowed to be any nonnegative constant; in particular, constant heat conductivity is allowed. (English)
Keyword: reactive and radiative gas
Keyword: global solution
Keyword: global a priori estimates
MSC: 35A01
MSC: 35A02
MSC: 35L60
MSC: 35L65
MSC: 35N10
MSC: 35Q30
MSC: 76N15
idZBL: Zbl 1249.35251
idMR: MR2899727
DOI: 10.1007/s10492-012-0008-9
Date available: 2012-03-05T07:01:04Z
Last updated: 2020-07-02
Stable URL:
Reference: [1] Antontsev, S. N., Kazhikhov, A. V., Monakhov, V. N.: Boundary Value Problems in Mechanics of Nonhomogeneous Fluids.North-Holland Amsterdam (1990). Zbl 0696.76001, MR 1035212
Reference: [2] Bebernes, J., Bressan, A.: Global a priori estimates for a viscous reactive gas.Proc. R. Soc. Edinb., Sect. A 101 (1985), 321-333. Zbl 0614.76076, MR 0824230, 10.1017/S0308210500020862
Reference: [3] Bebernes, J., Eberly, D.: Mathematical Problems from Combustion Theory.Springer New York (1989). Zbl 0692.35001, MR 1012946
Reference: [4] Chen, G.-Q.: Global solution to the compressible Navier-Stokes equations for a reacting mixture.SIAM J. Math. Anal. 23 (1992), 609-634. MR 1158824, 10.1137/0523031
Reference: [5] Chen, G.-Q., Hoff, D., Trivisa, K.: Global solution to a model for exothermically reacting compressible flows with large discontinuous data.Arch. Ration. Mech. Anal. 166 (2003), 321-358. MR 1961444, 10.1007/s00205-002-0233-6
Reference: [6] Ducomet, B.: Hydrodynamical models of gaseous stars.Rev. Math. Phys. 8 (1996), 957-1000. Zbl 0949.76071, MR 1415382, 10.1142/S0129055X96000354
Reference: [7] Ducomet, B.: A model of thermal dissipation for a one-dimensional viscous reactive and radiative gas.Math. Methods Appl. Sci. 22 (1999), 1323-1349. Zbl 1027.85005, MR 1710987, 10.1002/(SICI)1099-1476(199910)22:15<1323::AID-MMA80>3.0.CO;2-8
Reference: [8] Ducomet, B.: Global existence for a nuclear fluid in one dimension: the $T>0$ case.Appl. Math. 47 (2002), 45-75. Zbl 1090.76517, MR 1876491, 10.1023/A:1021754900964
Reference: [9] Ducomet, B., Zlotnik, A.: Lyapunov functional method for 1D radiative and reactive viscous gas dynamics.Arch. Ration. Mech. Anal. 177 (2005), 185-229. Zbl 1070.76044, MR 2188048, 10.1007/s00205-005-0363-8
Reference: [10] Ducomet, B., Zlotnik, A.: On the large-time behavior of 1D radiative and reactive viscous flows for higher-order kinetics.Nonlinear Anal., Theory Methods Appl. 63 (2005), 1011-1033. Zbl 1083.35109, MR 2211579, 10.1016/
Reference: [11] Song, J.: On initial boundary value problems for a viscous heat-conducting one-dimensional real gas.J. Differ. Equations 110 (1994), 157-181. MR 1278368, 10.1006/jdeq.1994.1064
Reference: [12] Kawohl, B.: Global existence of large solutions to initial boundary value problems for a viscous, heat-conducting, one-dimensional real gas.J. Differ. Equations 58 (1985), 76-103. Zbl 0579.35052, MR 0791841, 10.1016/0022-0396(85)90023-3
Reference: [13] Kazhikhov, A. V., Shelukhin, V. V.: Unique global solution with respect to time of the initial-boundary value problems for one-dimensional equations of a viscous gas.J. Appl. Math. Mech. 41 (1977), 282-291. MR 0468593, 10.1016/0021-8928(77)90011-9
Reference: [14] Lewicka, M., Mucha, P. B.: On temporal asymptotics for the $p$th power viscous reactive gas.Nonlinear Anal., Theory Methods Appl. 57 (2004), 951-969. Zbl 1094.76052, MR 2070619, 10.1016/
Reference: [15] Mihalas, D., Mihalas, B. Weibel: Foundations of Radiation Hydrodynamics.Oxford University Press New York (1984). MR 0781346
Reference: [16] Shelukhin, V. V.: A shear flow problem for the compressible Navier-Stokes equations.Int. J. Non-Linear Mech. 33 (1998), 247-257. Zbl 0894.76071, MR 1469854, 10.1016/S0020-7462(97)00010-3
Reference: [17] Solonnikov, V. A., Kazhikhov, A. V.: Existence theorems for the equations of motion of a compressible viscous fluid.Ann. Rev. Fluid Mech. 13 (1981), 79-95. Zbl 0492.76074, 10.1146/annurev.fl.13.010181.000455
Reference: [18] Umehara, M., Tani, A.: Global solution to the one-dimensional equations for a self-gravitating viscous radiative and reactive gas.J. Differ. Equations 234 (2007), 439-463. Zbl 1119.35070, MR 2300663, 10.1016/j.jde.2006.09.023
Reference: [19] Wang, D.: Global solution for the mixture of real compressible reacting flows in combustion.Commun. Pure Appl. Anal. 3 (2004), 775-790. Zbl 1064.76091, MR 2106299, 10.3934/cpaa.2004.3.775
Reference: [20] Williams, F. A.: Combustion Theory: The Fundamental Theory of Chemically Reacting Flow System. 2nd ed.Benjamin-Cummings Publ. Co. San Francisco (1985).
Reference: [21] Yanagi, S.: Asymptotic stability of the solutions to a full one-dimensional system of heat-conductive, reactive, compressible viscous gas.Japan J. Ind. Appl. Math. 15 (1998), 423-442. Zbl 0912.76077, MR 1651737, 10.1007/BF03167320
Reference: [22] Zel'dovich, Y. B., Raizer, Y. P.: Physics of Shock Waves and High-Temperature Hydrodynamic Phenomena, Vol. 2.Academic Press New Work (1967).
Reference: [23] Zlotnik, A.: Weak solutions to the equations of motion of viscous compressible reacting binary mixtures: uniqueness and Lipschitz-continuous dependence on data.Math. Notes 75 (2004), 307-311. Zbl 1122.35118, MR 2054563, 10.1023/B:MATN.0000015045.35518.a4


Files Size Format View
AplMat_57-2012-2_3.pdf 294.6Kb application/pdf View/Open
Back to standard record
Partner of
EuDML logo