Previous |  Up |  Next

Article

Title: Exponents for three-dimensional simultaneous Diophantine approximations (English)
Author: Moshchevitin, Nikolay
Language: English
Journal: Czechoslovak Mathematical Journal
ISSN: 0011-4642 (print)
ISSN: 1572-9141 (online)
Volume: 62
Issue: 1
Year: 2012
Pages: 127-137
Summary lang: English
.
Category: math
.
Summary: Let $\Theta = (\theta _1,\theta _2,\theta _3)\in \mathbb {R}^3$. Suppose that $1,\theta _1,\theta _2,\theta _3$ are linearly independent over $\mathbb {Z}$. For Diophantine exponents $$ \begin {aligned} \alpha (\Theta ) &= \sup \{\gamma >0\colon \limsup _{t\to +\infty } t^\gamma \psi _\Theta (t) <+\infty \},\\ \beta (\Theta ) &= \sup \{\gamma >0\colon \liminf _{t\to +\infty } t^\gamma \psi _\Theta (t)<+\infty \} \end {aligned} $$ we prove $$ \beta (\Theta ) \ge \frac {1}{2} \Bigg ( \frac {\alpha (\Theta )}{1-\alpha (\Theta )} +\sqrt {\Big (\frac {\alpha (\Theta )}{1-\alpha (\Theta )} \Big )^2 +\frac {4\alpha (\Theta )}{1-\alpha (\Theta )}} \Bigg ) \alpha (\Theta ). $$ (English)
Keyword: Diophantine approximations
Keyword: Diophantine exponents
Keyword: Jarník's transference principle
MSC: 11J13
idZBL: Zbl 1249.11061
idMR: MR2899740
DOI: 10.1007/s10587-012-0001-1
.
Date available: 2012-03-05T07:17:32Z
Last updated: 2020-07-03
Stable URL: http://hdl.handle.net/10338.dmlcz/142046
.
Reference: [1] Jarník, V.: Contribution à la théorie des approximations diophantiennes linéaires et homogènes.Czech. Math. J. 4 (1954), 330-353 Russian, French summary. Zbl 0057.28303, MR 0072183
Reference: [2] Laurent, M.: Exponents of Diophantine approximations in dimension two.Can. J. Math. 61 (2009), 165-189. MR 2488454, 10.4153/CJM-2009-008-2
Reference: [3] Moshchevitin, N. G.: Contribution to Vojtěch Jarník.Preprint available at arXiv:0912.2442v3. MR 0095106
Reference: [4] Moshchevitin, N. G.: Khintchine's singular Diophantine systems and their applications.Russ. Math. Surv. 65 433-511 (2010), Translation from Uspekhi Mat. Nauk. 65 43-126 (2010). Zbl 1225.11094, MR 2682720, 10.1070/RM2010v065n03ABEH004680
Reference: [5] Schmidt, W. M.: On heights of algebraic subspaces and Diophantine approximations.Ann. Math. (2) 85 (1967), 430-472. Zbl 0152.03602, MR 0213301, 10.2307/1970352
.

Files

Files Size Format View
CzechMathJ_62-2012-1_10.pdf 250.7Kb application/pdf View/Open
Back to standard record
Partner of
EuDML logo