Previous |  Up |  Next

Article

Title: Spectral characterization of multicone graphs (English)
Author: Wang, Jianfeng
Author: Zhao, Haixing
Author: Huang, Qiongxiang
Language: English
Journal: Czechoslovak Mathematical Journal
ISSN: 0011-4642 (print)
ISSN: 1572-9141 (online)
Volume: 62
Issue: 1
Year: 2012
Pages: 117-126
Summary lang: English
.
Category: math
.
Summary: A multicone graph is defined to be the join of a clique and a regular graph. Based on Zhou and Cho's result [B. Zhou, H. H. Cho, Remarks on spectral radius and Laplacian eigenvalues of a graph, Czech. Math. J. 55 (130) (2005), 781–790], the spectral characterization of multicone graphs is investigated. Particularly, we determine a necessary and sufficient condition for two multicone graphs to be cospectral graphs and investigate the structures of graphs cospectral to a multicone graph. Additionally, lower and upper bounds for the largest eigenvalue of a multicone graph are given. (English)
Keyword: adjacency matrix
Keyword: cospectral graph
Keyword: spectral characteriztion
Keyword: multicone graph
MSC: 05C50
idZBL: Zbl 1249.05256
idMR: MR2899739
DOI: 10.1007/s10587-012-0021-x
.
Date available: 2012-03-05T07:16:48Z
Last updated: 2020-07-03
Stable URL: http://hdl.handle.net/10338.dmlcz/142045
.
Reference: [1] Cvetković, D ., Doob, M., Sachs, H.: Spectra of Graphs. Theory and Applications. 3rd revised a. enl. ed..J. A. Barth Verlag Leipzig (1995). MR 1324340
Reference: [2] Cvetković, D., Doob, M., Simić, S.: Generalized line graphs.J. Graph Theory 5 (1981), 385-399. Zbl 0475.05061, MR 0635701, 10.1002/jgt.3190050408
Reference: [3] Dam, E. R. van, Haemers, W. H.: Which graphs are determined by their spectrum?.Linear Algebra Appl. 373 (2003), 241-272. MR 2022290
Reference: [4] Dam, E. R. van, Haemers, W. H.: Developments on spectral characterizations of graphs.Discrete Math. 309 (2009), 576-586. MR 2499010, 10.1016/j.disc.2008.08.019
Reference: [5] Godsil, C. D., McKay, B. D.: Constructing cospectral graphs.Aequationes Math. 25 (1982), 257-268. Zbl 0527.05051, MR 0730486, 10.1007/BF02189621
Reference: [6] Erdős, P., Rényi, A., Sós, V. T.: On a problem of graph theory.Stud. Sci. Math. Hung. 1 (1966), 215-235. MR 0223262
Reference: [7] Günthard, Hs. H., Primas, H.: Zusammenhang von Graphtheorie und Mo-Theorie von Molekeln mit Systemen konjugierter Bindungen.Helv. Chim. Acta 39 (1956), 1645-1653. 10.1002/hlca.19560390623
Reference: [8] Haemers, W. H., Spence, E.: Enumeration of cospectral graphs.Eur. J. Comb. 25 (2004), 199-211. Zbl 1033.05070, MR 2070541, 10.1016/S0195-6698(03)00100-8
Reference: [9] Harary, F., King, C., Mowshowitz, A., Read, R.: Cospectral graphs and digraphs.Bull. Lond. Math. Soc. 3 (1971), 321-328. Zbl 0224.05125, MR 0294176, 10.1112/blms/3.3.321
Reference: [10] Hong, Y., Shu, J.-L., Fang, K.: A sharp upper bound of the spectral radius of graphs.J. Comb. Theory, Ser. B 81 (2001), 177-183. Zbl 1024.05059, MR 1814902, 10.1006/jctb.2000.1997
Reference: [11] Johnson, C. R., Newman, M.: A note on cospectral graphs.J. Comb. Theory, Ser. B 28 (1980), 96-103. Zbl 0431.05021, MR 0565513, 10.1016/0095-8956(80)90058-1
Reference: [12] Nikiforov, V.: Some inequalities for the largest eigenvalue of a graph.Comb. Probab. Comput. 11 (2002), 179-189. Zbl 1005.05029, MR 1888908, 10.1017/S0963548301004928
Reference: [13] Zhou, B., Cho, H. H.: Remarks on spectral radius and Laplacian eigenvalues of a graph.Czech. Math. J. 55 (130) (2005), 781-790. Zbl 1081.05068, MR 2153101, 10.1007/s10587-005-0064-3
Reference: [14] Wang, J. F., Belardo, F., Huang, Q. X., Borovićanin, B.: On the two largest Q-eigenvalues of graphs.Discrete Math. 310 (2010), 2858-2866. Zbl 1208.05079, MR 2677645, 10.1016/j.disc.2010.06.030
Reference: [15] Wilf, H. S.: The friendship theorem.Combinatorial Mathematics and Its Applications. Proc. Conf. Math. Inst., Oxford D. J. A. Welsh Academic Press New York-Lodon (1971), 307-309. Zbl 0226.05002, MR 0282857
.

Files

Files Size Format View
CzechMathJ_62-2012-1_9.pdf 255.9Kb application/pdf View/Open
Back to standard record
Partner of
EuDML logo