Previous |  Up |  Next

Article

Title: The Laplacian spread of graphs (English)
Author: You, Zhifu
Author: Liu, BoLian
Language: English
Journal: Czechoslovak Mathematical Journal
ISSN: 0011-4642 (print)
ISSN: 1572-9141 (online)
Volume: 62
Issue: 1
Year: 2012
Pages: 155-168
Summary lang: English
.
Category: math
.
Summary: The Laplacian spread of a graph is defined as the difference between the largest and second smallest eigenvalues of the Laplacian matrix of the graph. In this paper, bounds are obtained for the Laplacian spread of graphs. By the Laplacian spread, several upper bounds of the Nordhaus-Gaddum type of Laplacian eigenvalues are improved. Some operations on Laplacian spread are presented. Connected $c$-cyclic graphs with $n$ vertices and Laplacian spread $n-1$ are discussed. (English)
Keyword: Laplacian eigenvalues
Keyword: spread
MSC: 05C50
MSC: 15A18
idZBL: Zbl 1245.05089
idMR: MR2899742
DOI: 10.1007/s10587-012-0003-z
.
Date available: 2012-03-05T07:20:18Z
Last updated: 2020-07-03
Stable URL: http://hdl.handle.net/10338.dmlcz/142048
.
Reference: [1] Bao, Y. H., Tan, Y. Y., Fan, Y. Z.: The Laplacian spread of unicyclic graphs.Appl. Math. Lett. 22 (2009), 1011-1015. Zbl 1179.05069, MR 2522991, 10.1016/j.aml.2009.01.023
Reference: [2] Chen, Y., Wang, L.: The Laplacian spread of tricyclic graphs.Electron. J. Comb. 16 (2009), R80. Zbl 1230.05198, MR 2529789, 10.37236/169
Reference: [3] Cvetković, D. M., Doob, M., Sachs, H.: Spectra of Graphs.VEB Deutscher Verlag der Wissenschaften Berlin (1980). Zbl 0458.05042
Reference: [4] Das, K. C.: The Laplacian spectrum of a graph.Comput. Math. Appl. 48 (2004), 715-724. Zbl 1058.05048, MR 2105246, 10.1016/j.camwa.2004.05.005
Reference: [5] Dam, E. R. van, Haemers, W. H.: Graphs with constant $\mu$ and $\overline{\mu}$.Discrete Math. 182 (1998), 293-307. MR 1603715, 10.1016/S0012-365X(97)00150-7
Reference: [6] Fan, Y. Z., Xu, J., Wang, Y., Liang, D.: The Laplacian spread of a tree.Discrete Math. Theor. Comput. Sci. 10 (2008), 79-86 Electronic only. Zbl 1153.05323, MR 2383736
Reference: [7] Fan, Y., Li, S., Tan, Y.: The Laplacian spread of bicyclic graphs.J. Math. Res. Expo. 30 (2010), 17-28. MR 2605816
Reference: [8] Fiedler, M.: Algebraic connectivity of graphs.Czech. Math. J. 23 (1973), 98-305. Zbl 0265.05119, MR 0318007
Reference: [9] Goldberg, F.: Bounding the gap between extremal Laplacian eigenvalues of graphs.Linear Algebra Appl. 416 (2006), 68-74. Zbl 1107.05059, MR 2232920, 10.1016/j.laa.2005.07.007
Reference: [10] Gregory, D. A., Hershkowitz, D., Kirkland, S. J.: The spread of the spectrum of a graph.Linear Algebra Appl. 332-334 (2001), 23-35. Zbl 0978.05049, MR 1839425
Reference: [11] Grone, R., Merris, R., Sunder, V. S.: The Laplacian spectrum of a graph.SIAM J. Matrix Anal. Appl. 11 (1990), 218-239. Zbl 0733.05060, MR 1041245, 10.1137/0611016
Reference: [12] Grone, R., Merris, R.: The Laplacian spectrum of a graph II.SIAM J. Discrete Math. 7 (1994), 221-229. Zbl 0795.05092, MR 1271994, 10.1137/S0895480191222653
Reference: [13] Hong, Y., Shu, J. L.: A sharp upper bound for the spectral radius of the Nordhaus-Gaddum type.Discrete Math. 211 (2000), 229-232. Zbl 0952.05045, MR 1735340, 10.1016/S0012-365X(99)90280-7
Reference: [14] Lazić, M.: On the Laplacian energy of a graph.Czech. Math. J. 56 (2006), 1207-1213. Zbl 1164.05408, MR 2280804, 10.1007/s10587-006-0089-2
Reference: [15] Li, J., Shiu, W. C., Chan, W. H.: Some results on the Laplacian eigenvalues of unicyclic graphs.Linear Algebra Appl. 430 (2009), 2080-2093. Zbl 1225.05169, MR 2503955
Reference: [16] Li, P., Shi, J. S., Li, R. L.: Laplacian spread of bicyclic graphs.J. East China Norm. Univ. (Nat. Sci. Ed.) 1 (2010), 6-9 Chinese. MR 2682387
Reference: [17] Liu, H., Lu, M., Tian, F.: On the Laplacian spectral radius of a graph.Linear Algebra Appl. 376 (2004), 135-141. Zbl 1032.05087, MR 2014889
Reference: [18] Liu, B., Liu, M.-H.: On the spread of the spectrum of a graph.Discrete Math. 309 (2009), 2727-2732. Zbl 1194.05091, MR 2523780, 10.1016/j.disc.2008.06.026
Reference: [19] Lu, M., Liu, H., Tian, F.: Laplacian spectral bounds for clique and independence numbers of graphs.J. Comb. Theory, Ser. B 97 (2007), 726-732. Zbl 1122.05072, MR 2344135, 10.1016/j.jctb.2006.12.003
Reference: [20] Merris, R.: Laplacian matrices of graphs: A survey.Linear Algebra Appl. 197-198 (1994), 143-176. Zbl 0802.05053, MR 1275613
Reference: [21] Nordhaus, E. A., Gaddum, J. W.: On complementary graphs.Am. Math. Mon. 63 (1956), 175-177. Zbl 0070.18503, MR 0078685, 10.2307/2306658
Reference: [22] Ozeki, N.: On the estimation of the inequality by the maximum.J. College Arts Chiba Univ. 5 (1968), 199-203. MR 0254198
Reference: [23] Shi, L.: Bounds on the (Laplacian) spectral radius of graphs.Linear Algebra Appl. 422 (2007), 755-770. Zbl 1113.05065, MR 2305155, 10.1016/j.laa.2006.12.003
Reference: [24] You, Z., Liu, B.: The minimum Laplacian spread of unicyclic graphs.Linear Algebra Appl. 432 (2010), 499-504. Zbl 1206.05066, MR 2577695, 10.1016/j.laa.2009.08.027
Reference: [25] Zhang, X.: On the two conjectures of Graffiti.Linear Algebra Appl. 385 (2004), 369-379. Zbl 1051.05062, MR 2063360
Reference: [26] Zhou, B.: On sum of powers of the Laplacian eigenvalues of graphs.Linear Algebra Appl. 429 (2008), 2239-2246. Zbl 1144.05325, MR 2446656, 10.1016/j.laa.2008.06.023
.

Files

Files Size Format View
CzechMathJ_62-2012-1_12.pdf 271.9Kb application/pdf View/Open
Back to standard record
Partner of
EuDML logo