Previous |  Up |  Next

Article

Title: On linear operators strongly preserving invariants of Boolean matrices (English)
Author: Chen, Yizhi
Author: Zhao, Xianzhong
Language: English
Journal: Czechoslovak Mathematical Journal
ISSN: 0011-4642 (print)
ISSN: 1572-9141 (online)
Volume: 62
Issue: 1
Year: 2012
Pages: 169-186
Summary lang: English
.
Category: math
.
Summary: Let $\mathbb {B}_{k}$ be the general Boolean algebra and $T$ a linear operator on $M_{m,n}(\mathbb {B}_{k})$. If for any $A$ in $M_{m,n}(\mathbb {B}_{k})$ ($ M_{n}(\mathbb {B}_{k})$, respectively), $A$ is regular (invertible, respectively) if and only if $T(A)$ is regular (invertible, respectively), then $T$ is said to strongly preserve regular (invertible, respectively) matrices. In this paper, we will give complete characterizations of the linear operators that strongly preserve regular (invertible, respectively) matrices over $\mathbb {B}_{k}$. Meanwhile, noting that a general Boolean algebra $\mathbb {B}_{k}$ is isomorphic to a finite direct product of binary Boolean algebras, we also give some characterizations of linear operators that strongly preserve regular (invertible, respectively) matrices over $\mathbb {B}_{k}$ from another point of view. (English)
Keyword: linear operator
Keyword: invariant
Keyword: regular matrix
Keyword: invertible matrix
Keyword: general Boolean algebra
MSC: 06E05
MSC: 15A04
MSC: 15A09
MSC: 15A86
MSC: 15B34
MSC: 16Y60
idZBL: Zbl 1249.15034
idMR: MR2899743
DOI: 10.1007/s10587-012-0004-y
.
Date available: 2012-03-05T07:22:06Z
Last updated: 2020-07-03
Stable URL: http://hdl.handle.net/10338.dmlcz/142049
.
Reference: [1] Bapat, R. B.: Structure of a nonnegative regular matrix and its generalized inverses.Linear Algebra Appl. 268 (1998), 31-39. Zbl 0885.15015, MR 1480331
Reference: [2] Beasley, L. B., Guterman, A. E., Lee, S.-G., Song, S.-Z.: Linear transformations preserving the Grassmannian over $M_{n}(Z_{+})$.Linear Algebra Appl. 393 (2004), 39-46. MR 2098603
Reference: [3] Beasley, L. B., Guterman, A. E.: The characterization of operators preserving primitivity for matrix $k$-tuples.Linear Algebra Appl. 430 (2009), 1762-1777. Zbl 1168.15010, MR 2494662
Reference: [4] Beasley, L. B., Lee, S. G.: Linear operations strongly preserving $r$-potent matrices over semirings.Linear Algebra Appl. 162-164 (1992), 589-599. MR 1148418
Reference: [5] Beasley, L. B., Pullman, N. J.: Boolean rank preserving operators and Boolean rank-1 spaces.Linear Algebra Appl. 59 (1984), 55-77. Zbl 0536.20044, MR 0743045, 10.1016/0024-3795(84)90158-7
Reference: [6] Beasley, L. B., Pullman, N. J.: Operators that preserve semiring matrix functions.Linear Algebra Appl. 99 (1988), 199-216. Zbl 0635.15003, MR 0925157, 10.1016/0024-3795(88)90132-2
Reference: [7] Beasley, L. B., Pullman, N. J.: Fuzzy rank-preserving operators.Linear Algebra Appl. 73 (1986), 197-211. Zbl 0578.15002, MR 0818901, 10.1016/0024-3795(86)90240-5
Reference: [8] Beasley, L. B., Pullman, N. J.: Linear operators strongly preserving idempotent matrices over semirings.Linear Algebra Appl. 160 (1992), 217-229. Zbl 0744.15010, MR 1137853
Reference: [9] Dénes, J.: Transformations and transformation semigroups I. Seminar Report.Magyar Tud. Akad., Mat. Fiz. Tud. Oszt. Közl. 19 (1969), 247-269 Hungarian. MR 0274612
Reference: [10] Golan, J. S.: Semirings and Their Applications.Kluwer Dordrecht (1999). Zbl 0947.16034, MR 1746739
Reference: [11] Kim, K. H.: Boolean Matrix Theory and Applications.Pure Appl. Math., Vol. 70 Marcel Dekker New York (1982). Zbl 0495.15003, MR 0655414
Reference: [12] Kang, K.-T., Song, S.-Z., Jun, Y.-B.: Linear operators that strongly preserve regularity of fuzzy matrices.Math. Commun. 15 (2010), 243-254. Zbl 1200.15013, MR 2668997
Reference: [13] Kirkland, S., Pullman, N. J.: Linear operators preserving invariants of non-binary Boolean matrices.Linear Multilinear Algebra 33 (1993), 295-300. MR 1334678, 10.1080/03081089308818200
Reference: [14] Li, H. H., Tan, Y. J., Tang, J. M.: Linear operators that strongly preserve invertible matrices over antinegative semirings.J. Univ. Sci. Technol. China 37 (2007), 238-242. Zbl 1174.15304, MR 2330655
Reference: [15] Luce, R. D.: A note on Boolean matrix theory.Proc. Am. Math. Soc. 3 (1952), 382-388. Zbl 0048.02302, MR 0050559, 10.1090/S0002-9939-1952-0050559-1
Reference: [16] Orel, M.: Nonbijective idempotents preservers over semirings.J. Korean Math. Soc. 47 (2010), 805-818. Zbl 1208.15023, MR 2667773, 10.4134/JKMS.2010.47.4.805
Reference: [17] Plemmons, R. J.: Generalized inverses of Boolean relation matrices.SIAM J. Appl. Math. 20 (1971), 426-433. Zbl 0227.05013, MR 0286806, 10.1137/0120046
Reference: [18] Pshenitsyna, O. A.: Maps preserving invertibility of matrices over semirings.Russ. Math. Surv. 64 (2009), 162-164. Zbl 1176.15037, MR 2503107, 10.1070/RM2009v064n01ABEH004604
Reference: [19] Rao, P. S. S. N. V. P., Rao, K. P. S. B.: On generalized inverses of Boolean matrices.Linear Algebra Appl. 11 (1975), 135-153. Zbl 0322.15011, MR 0376706, 10.1016/0024-3795(75)90054-3
Reference: [20] Rutherford, D. E.: Inverses of Boolean matrices.Proc. Glasg. Math. Assoc. 6 (1963), 49-53. Zbl 0114.01701, MR 0148585, 10.1017/S2040618500034705
Reference: [21] Song, S.-Z., Beasley, L. B., Cheon, G. S., Jun, Y.-B.: Rank and perimeter preservers of Boolean rank-1 matrices.J. Korean Math. Soc. 41 (2004), 397-406. Zbl 1055.15004, MR 2036618, 10.4134/JKMS.2004.41.2.397
Reference: [22] Song, S.-Z., Kang, K.-T., Jun, Y.-B.: Linear preservers of Boolean nilpotent matrices.J. Korean Math. Soc. 43 (2006), 539-552. Zbl 1186.15023, MR 2218232, 10.4134/JKMS.2006.43.3.539
Reference: [23] Song, S.-Z., Kang, K.-T., Beasley, L. B., Sze, N.-S.: Regular matrices and their strong preservers over semirings.Linear Algebra Appl. 429 (2008), 209-223. Zbl 1152.15004, MR 2419150
Reference: [24] Song, S.-Z., Kang, K.-T., Beasley, L. B.: Idempotent matrix preservers over Boolean algebras.J. Korean Math. Soc. 44 (2007), 169-178. Zbl 1123.15002, MR 2283465, 10.4134/JKMS.2007.44.1.169
Reference: [25] Song, S.-Z., Kang, K.-T., Kang, M.-H.: Boolean regular matrices and their strongly preservers.Bull. Korean Math. Soc. 46 (2009), 373-385. Zbl 1167.15004, MR 2502801, 10.4134/BKMS.2009.46.2.373
Reference: [26] Song, S.-Z., Lee, S.-G.: Column ranks and their preservers of general Boolean matrices.J. Korean Math. Soc. 32 (1995), 531-540. Zbl 0837.15001, MR 1355672
.

Files

Files Size Format View
CzechMathJ_62-2012-1_13.pdf 291.7Kb application/pdf View/Open
Back to standard record
Partner of
EuDML logo