Previous |  Up |  Next


Title: Conformal vector fields on Finsler manifolds (English)
Author: Szilasi, József
Author: Tóth, Anna
Language: English
Journal: Communications in Mathematics
ISSN: 1804-1388
Volume: 19
Issue: 2
Year: 2011
Pages: 149-168
Summary lang: English
Category: math
Summary: Applying concepts and tools from classical tangent bundle geometry and using the apparatus of the calculus along the tangent bundle projection (‘pull-back formalism’), first we enrich the known lists of the characterizations of affine vector fields on a spray manifold and conformal vector fields on a Finsler manifold. Second, we deduce consequences on vector fields on the underlying manifold of a Finsler structure having one or two of the mentioned geometric properties. (English)
Keyword: spray manifold
Keyword: Finsler manifold
Keyword: projective vector field
Keyword: affine vector field
Keyword: conformal vector field
MSC: 53A30
MSC: 53C60
idZBL: Zbl 1247.53089
idMR: MR2897267
Date available: 2012-04-06T06:20:06Z
Last updated: 2013-10-22
Stable URL:
Reference: [1] Abraham, R., Marsden, J.E., Ratiu, T.: Manifolds, Tensor Analysis, and Applications. 2nd edition, Springer-Verlag, New York and Berlin 1988 Zbl 0875.58002, MR 0960687
Reference: [2] Akbar-Zadeh, H.: Transformations infinitésimales conformes des variétés finsleriennes compactes. Annales Polonici Mathematici XXXVI 1979 213-229 Zbl 0413.53036, MR 0537616
Reference: [3] Akbar-Zadeh, H.: Champs de vecteurs projectifs sur le fibré unitaire. J. Math. pures et appl. 65 1986 47-79 MR 0844240
Reference: [4] Bácsó, S., Szilasi, Z.: On the projective theory of sprays. Acta Math. Acad. Paed. Nyregyháziensis 26 2010 171-207 Zbl 1240.53047, MR 2754415
Reference: [5] Crampin, M.: On horizontal distributions on the tangent bundle of a differentiable manifold. J. London Math. Soc (2) 3 1971 178-182 Zbl 0215.51003, MR 0293528, 10.1112/jlms/s2-3.1.178
Reference: [6] León, M. de, Rodrigues, P.R.: Methods of Differential Geometry in Analytical Mechanics. North-Holland, Amsterdam 1989 Zbl 0687.53001, MR 1021489
Reference: [7] Greub, W., Halperin, S., Vanstone, R.: Connections, Curvature, and Cohomology. Vol. I, Academic Press, New York and London 1972 Zbl 0322.58001
Reference: [8] Grifone, J.: Structure presque-tangente et connexions, I. Ann. Inst. Fourier (Grenoble) 22 1972 287-334 Zbl 0219.53032, MR 0336636, 10.5802/aif.407
Reference: [9] Grifone, J.: Transformations infinitésimales conformes d’une variété finslerienne. C.R. Acad. Sc. Paris 280, Série A 1975 519-522 Zbl 0311.53071, MR 0388300
Reference: [10] Grifone, J.: Sur les transformations infinitésimales conformes d’une variété finslérienne. C.R. Acad. Sc. Paris 280, Série A 1975 583-585 Zbl 0311.53071, MR 0370450
Reference: [11] Lang, S.: Fundamentals of Differential Geometry. Springer-Verlag, New York 1999 Zbl 0932.53001, MR 1666820
Reference: [12] Lovas, R.L.: Affine and projective vector fields on spray manifolds. Periodica Mathematica Hungarica 48 2004 165-179 Zbl 1067.53059, MR 2077694, 10.1023/B:MAHU.0000038973.18653.2e
Reference: [13] Matsumoto, M.: Theory of extended point transformations of Finsler spaces I. Tensor N.S. 45 1987 109-115 Zbl 0637.53031
Reference: [14] Matsumoto, M.: Theory of extended point transformations of Finsler spaces II. Tensor N.S. 47 1988 203-214 Zbl 0701.53046, MR 1037236
Reference: [15] Misra, R.B.: Groups of transformations in Finslerian spaces. Internal Reports of the ICTP, Trieste 1993
Reference: [16] Szilasi, J.: A Setting for Spray and Finsler Geometry. Handbook of Finsler Geometry , Kluwer Academic Publishers, Dordrecht 2003 1183-1426 Zbl 1105.53043, MR 2066454
Reference: [17] Szilasi, J., Vincze, Cs.: On conformal equivalence of Riemann-Finsler metrics. Publ. Math. Debrecen 52 1998 167-185 Zbl 0907.53044, MR 1603351
Reference: [18] Yano, K.: The Theory of Lie Derivatives and its Applications. North-Holland, Amsterdam 1957 Zbl 0077.15802, MR 0088769
Reference: [19] Yano, K., Ishihara, S.: Tangent and Cotangent Bundles. Marcel Dekker Inc., New York 1973 Zbl 0262.53024, MR 0350650


Files Size Format View
ActaOstrav_19-2011-2_5.pdf 539.1Kb application/pdf View/Open
Back to standard record
Partner of
EuDML logo