Title:
|
Commutative subloop-free loops (English) |
Author:
|
Beaudry, Martin |
Author:
|
Marchand, Louis |
Language:
|
English |
Journal:
|
Commentationes Mathematicae Universitatis Carolinae |
ISSN:
|
0010-2628 (print) |
ISSN:
|
1213-7243 (online) |
Volume:
|
52 |
Issue:
|
4 |
Year:
|
2011 |
Pages:
|
473-484 |
Summary lang:
|
English |
. |
Category:
|
math |
. |
Summary:
|
We describe, in a constructive way, a family of commutative loops of odd order, $n\geq 7$, which have no nontrivial subloops and whose multiplication group is isomorphic to the alternating group $\mathcal{A}_n$. (English) |
Keyword:
|
loops |
Keyword:
|
multiplication group |
Keyword:
|
alternating group |
MSC:
|
20D06 |
MSC:
|
20N05 |
idZBL:
|
Zbl 1249.20078 |
idMR:
|
MR2863992 |
. |
Date available:
|
2012-05-01T01:46:44Z |
Last updated:
|
2015-02-11 |
Stable URL:
|
http://hdl.handle.net/10338.dmlcz/142799 |
. |
Reference:
|
[1] Albert A.A.: Quasigroups. I.Trans. Amer. Math. Soc. 54 (1943), 507–519. Zbl 0063.00039, MR 0009962, 10.1090/S0002-9947-1943-0009962-7 |
Reference:
|
[2] Bruck R.H.: Contributions to the theory of loops.Trans. Amer. Math. Soc. 60 (1946), 245–354. Zbl 0061.02201, MR 0017288 |
Reference:
|
[3] Bruck R.H.: A Survey of Binary Systems.Springer, 1966. Zbl 0141.01401, MR 0093552 |
Reference:
|
[4] Cameron P.J.: Almost all quasigroups have rank $2$.Discrete Math 106/107 (1992), 111–115. Zbl 0786.20041, MR 1181904, 10.1016/0012-365X(92)90537-P |
Reference:
|
[5] Cavenagh N.J., Greenhill C., Wanless I.M.: The cycle structure of two rows in a random latin square.Random Structures Algorithms 33 (2008), 286–309. Zbl 1202.05015, MR 2446483, 10.1002/rsa.20216 |
Reference:
|
[6] Chein O., Pfugfelder H.O., Smith J.D.H.: Quasigroups and Loops: Theory and Applications.Helderman, Berlin, 1990. MR 1125806 |
Reference:
|
[7] Conway J.H., Hulpke A., McKay J.: On transitive permutation groups.LMS J. Computer Math. 1 (1998), 1–8. Zbl 0920.20001, MR 1635715, 10.1112/S1461157000000115 |
Reference:
|
[8] Drápal A., Kepka T.: Alternating groups and latin squares.European J. Combin. 10 (1989), 175–180. Zbl 0673.20038, MR 0988511, 10.1016/S0195-6698(89)80045-9 |
Reference:
|
[9] Guérin P.: Génération des classes d'isomorphisme des boucles d'ordre $8$.Master Thesis, Université du Québec à Chicoutimi, 2003. |
Reference:
|
[10] Häggkvist R., Janssen J.C.M.: All-even latin squares.Discrete Math. 157 (1996), 199–206. Zbl 0864.05017, MR 1417295 |
Reference:
|
[11] Hall M.: An existence theorem for latin squares.Bull. Amer. Math. Soc. 51 (1945), 387–388. Zbl 0060.02801, MR 0013111, 10.1090/S0002-9904-1945-08361-X |
Reference:
|
[12] Hall M.: The Theory of Groups.Macmillan, New York, 1959. Zbl 0919.20001, MR 0103215 |
Reference:
|
[13] Maenhaut B., Wanless I.M., Webb B.S.: Subsquare-free Latin squares of odd order.European J. Combin. 28 (2007), 322–336. Zbl 1109.05028, MR 2261822, 10.1016/j.ejc.2005.07.002 |
Reference:
|
[14] McKay B.D., Meynert A., Myrvold W.: Small Latin squares, quasigroups, and loops.J. Combin. Des. 15 (2007), 98–119. Zbl 1112.05018, MR 2291523, 10.1002/jcd.20105 |
Reference:
|
[15] Niemenmaa M., Kepka T.: On multiplication groups of loops.J. Algebra 135 (1990), 112–122. Zbl 0706.20046, MR 1076080, 10.1016/0021-8693(90)90152-E |
Reference:
|
[16] Pflugfelder H.O.: Quasigroups and Loops: Introduction.Heldermann, Berlin, 1990. Zbl 0715.20043, MR 1125767 |
Reference:
|
[17] Vesanen A.: The group PSL$(2,q)$ is not the multiplication group of a loop.Comm. Algebra 22 (1994), 1177–1195. MR 1261254, 10.1080/00927879408824900 |
Reference:
|
[18] Wielandt H.: Finite Permutation Groups.Academic Press, New York-London, 1964. Zbl 0138.02501, MR 0183775 |
. |