Previous |  Up |  Next

Article

Title: Commutative subloop-free loops (English)
Author: Beaudry, Martin
Author: Marchand, Louis
Language: English
Journal: Commentationes Mathematicae Universitatis Carolinae
ISSN: 0010-2628 (print)
ISSN: 1213-7243 (online)
Volume: 52
Issue: 4
Year: 2011
Pages: 473-484
Summary lang: English
.
Category: math
.
Summary: We describe, in a constructive way, a family of commutative loops of odd order, $n\geq 7$, which have no nontrivial subloops and whose multiplication group is isomorphic to the alternating group $\mathcal{A}_n$. (English)
Keyword: loops
Keyword: multiplication group
Keyword: alternating group
MSC: 20D06
MSC: 20N05
idZBL: Zbl 1249.20078
idMR: MR2863992
.
Date available: 2012-05-01T01:46:44Z
Last updated: 2015-02-11
Stable URL: http://hdl.handle.net/10338.dmlcz/142799
.
Reference: [1] Albert A.A.: Quasigroups. I.Trans. Amer. Math. Soc. 54 (1943), 507–519. Zbl 0063.00039, MR 0009962, 10.1090/S0002-9947-1943-0009962-7
Reference: [2] Bruck R.H.: Contributions to the theory of loops.Trans. Amer. Math. Soc. 60 (1946), 245–354. Zbl 0061.02201, MR 0017288
Reference: [3] Bruck R.H.: A Survey of Binary Systems.Springer, 1966. Zbl 0141.01401, MR 0093552
Reference: [4] Cameron P.J.: Almost all quasigroups have rank $2$.Discrete Math 106/107 (1992), 111–115. Zbl 0786.20041, MR 1181904, 10.1016/0012-365X(92)90537-P
Reference: [5] Cavenagh N.J., Greenhill C., Wanless I.M.: The cycle structure of two rows in a random latin square.Random Structures Algorithms 33 (2008), 286–309. Zbl 1202.05015, MR 2446483, 10.1002/rsa.20216
Reference: [6] Chein O., Pfugfelder H.O., Smith J.D.H.: Quasigroups and Loops: Theory and Applications.Helderman, Berlin, 1990. MR 1125806
Reference: [7] Conway J.H., Hulpke A., McKay J.: On transitive permutation groups.LMS J. Computer Math. 1 (1998), 1–8. Zbl 0920.20001, MR 1635715, 10.1112/S1461157000000115
Reference: [8] Drápal A., Kepka T.: Alternating groups and latin squares.European J. Combin. 10 (1989), 175–180. Zbl 0673.20038, MR 0988511, 10.1016/S0195-6698(89)80045-9
Reference: [9] Guérin P.: Génération des classes d'isomorphisme des boucles d'ordre $8$.Master Thesis, Université du Québec à Chicoutimi, 2003.
Reference: [10] Häggkvist R., Janssen J.C.M.: All-even latin squares.Discrete Math. 157 (1996), 199–206. Zbl 0864.05017, MR 1417295
Reference: [11] Hall M.: An existence theorem for latin squares.Bull. Amer. Math. Soc. 51 (1945), 387–388. Zbl 0060.02801, MR 0013111, 10.1090/S0002-9904-1945-08361-X
Reference: [12] Hall M.: The Theory of Groups.Macmillan, New York, 1959. Zbl 0919.20001, MR 0103215
Reference: [13] Maenhaut B., Wanless I.M., Webb B.S.: Subsquare-free Latin squares of odd order.European J. Combin. 28 (2007), 322–336. Zbl 1109.05028, MR 2261822, 10.1016/j.ejc.2005.07.002
Reference: [14] McKay B.D., Meynert A., Myrvold W.: Small Latin squares, quasigroups, and loops.J. Combin. Des. 15 (2007), 98–119. Zbl 1112.05018, MR 2291523, 10.1002/jcd.20105
Reference: [15] Niemenmaa M., Kepka T.: On multiplication groups of loops.J. Algebra 135 (1990), 112–122. Zbl 0706.20046, MR 1076080, 10.1016/0021-8693(90)90152-E
Reference: [16] Pflugfelder H.O.: Quasigroups and Loops: Introduction.Heldermann, Berlin, 1990. Zbl 0715.20043, MR 1125767
Reference: [17] Vesanen A.: The group PSL$(2,q)$ is not the multiplication group of a loop.Comm. Algebra 22 (1994), 1177–1195. MR 1261254, 10.1080/00927879408824900
Reference: [18] Wielandt H.: Finite Permutation Groups.Academic Press, New York-London, 1964. Zbl 0138.02501, MR 0183775
.

Files

Files Size Format View
CommentatMathUnivCarolRetro_52-2011-4_1.pdf 511.4Kb application/pdf View/Open
Back to standard record
Partner of
EuDML logo