Previous |  Up |  Next

Article

Title: Hom-Akivis algebras (English)
Author: Issa, A. Nourou
Language: English
Journal: Commentationes Mathematicae Universitatis Carolinae
ISSN: 0010-2628 (print)
ISSN: 1213-7243 (online)
Volume: 52
Issue: 4
Year: 2011
Pages: 485-500
Summary lang: English
.
Category: math
.
Summary: Hom-Akivis algebras are introduced. The commutator-Hom-associator algebra of a non-Hom-associative algebra (i.e. a Hom-nonassociative algebra) is a Hom-Akivis algebra. It is shown that Hom-Akivis algebras can be obtained from Akivis algebras by twisting along algebra endomorphisms and that the class of Hom-Akivis algebras is closed under self-morphisms. It is pointed out that a Hom-Akivis algebra associated to a Hom-alternative algebra is a Hom-Malcev algebra. (English)
Keyword: Akivis algebra
Keyword: Hom-associative algebra
Keyword: Hom-Lie algebra
Keyword: Hom-Akivis algebra
Keyword: Hom-Malcev algebra
MSC: 17A30
MSC: 17D10
MSC: 17D99
idZBL: Zbl 1249.17005
idMR: MR2863993
.
Date available: 2012-05-01T01:48:06Z
Last updated: 2015-02-11
Stable URL: http://hdl.handle.net/10338.dmlcz/142800
.
Reference: [1] Akivis M.A.: Three-webs of multidimensional surfaces.Trudy Geom. Sem. 2 (1969), 7–31 (Russian). Zbl 0701.53027, MR 0254760
Reference: [2] Akivis M.A.: Local differentiable quasigroups and three-webs of multidimensional surfaces.in Studies in the Theory of Quasigroups and Loops, Izdat. “Shtiintsa”, Kishinev, 1973 (Russian), pp. 3–12. MR 0370391
Reference: [3] Akivis M.A.: Local algebras of a multidimensional three-web.Siberian Math. J. 17 (1976), no. 1, 3–8. Zbl 0337.53018, MR 0405261, 10.1007/BF00969285
Reference: [4] Akivis M.A., Goldberg V.V.: Algebraic aspects of web geometry.Comment. Math. Univ. Carolin. 41 (2000), no. 2, 205–236. Zbl 1042.53007, MR 1780866
Reference: [5] Ataguema H., Makhlouf A., Silvestrov S.D.: Generalization of n-ary Nambu algebra and beyond.J. Math. Phys. 50 (2009), no. 8, 083501. MR 2554429, 10.1063/1.3167801
Reference: [6] Fregier Y., Gohr A.: On Hom-type algebras.arXiv:0903.3393v2 [math.RA] (2009). MR 2795570
Reference: [7] Fregier Y., Gohr A.: On unitality conditions for Hom-associative algebras.arXiv:0904.4874v2 [math.RA] (2009).
Reference: [8] Gohr A.: On Hom-algebras with surjective twisting.arXiv:0906.3270v3 [math.RA] (2009). MR 2673746
Reference: [9] Hartwig J.T., Larsson D., Silvestrov S.D.: Deformation of Lie algebras using $\sigma$-derivations.J. Algebra 295 (2006), 314–361. MR 2194957, 10.1016/j.jalgebra.2005.07.036
Reference: [10] Hofmann K.H., Strambach K.: Lie's fundamental theorems for local analytical loops.Pacific J. Math. 123 (1986), no. 2, 301–327. Zbl 0596.22002, MR 0840846, 10.2140/pjm.1986.123.301
Reference: [11] Kuzmin E.N.: Malcev algebras of dimension five over a field of zero characteristic.Algebra i Logika 9 (1970), 691–700. MR 0283033
Reference: [12] Makhlouf A.: Hom-alternative algebras and Hom-Jordan algebras.International Elect. J. Alg. 8 (2010), 177–190 (arXiv: 0909.0326v1 [math.RA] (2009)). MR 2660549
Reference: [13] Makhlouf A.: Paradigm of nonassociative Hom-algebras and Hom-superalgebras.Proceedings of Jordan Structures in Algebra and Analysis Meeting, eds. J. Carmona Tapia, A. Morales Campoy, A.M. Peralta Pereira, M.I. Ramirez Ivarez, Publishing House: Circulo RoJo (2010), pp. 145–177. MR 2648355
Reference: [14] Makhlouf A., Silvestrov S.D.: Hom-algebra structures.J. Gen. Lie Theory Appl. 2 (2008), 51–64. Zbl 1184.17002, MR 2399415, 10.4303/jglta/S070206
Reference: [15] Makhlouf A., Silvestrov S.D.: Hom-algebras and Hom-coalgebras.J. Algebra Appl. 9 (2010), no. 4, 553–589 (arXiv: 0811.0400v2 [math.RA] (2008)). MR 2718646, 10.1142/S0219498810004117
Reference: [16] Maltsev A.I.: Analytic loops.Mat. Sb. 36 (1955), 569–576. MR 0069190
Reference: [17] Myung H.C.: Malcev-Admissible Algebras.Progress in Mathematics, 64, Birkhäuser, Boston, MA, 1986. Zbl 0871.17030, MR 0885089
Reference: [18] Sagle A.A.: Malcev algebras.Trans. Amer. Math. Soc. 101 (1961), 426–458. Zbl 0136.02103, MR 0143791, 10.1090/S0002-9947-1961-0143791-X
Reference: [19] Yau D.: Enveloping algebras of Hom-Lie algebras.J. Gen. Lie Theory Appl. 2 (2008), 95–108. Zbl 1214.17001, MR 2399418, 10.4303/jglta/S070209
Reference: [20] Yau D.: Hom-algebras and homology.J. Lie Theory 19 (2009), 409–421 (arXiv:0712.3515v2 [math.RA] (2008)). MR 2572137
Reference: [21] Yau D.: Hom-Novikov algebras.J. Phys. A 44 (2011), 085202 (arXiv: 0909.0726v1 [math.RA] (2009)). Zbl 1208.81110, MR 2770370
Reference: [22] Yau D.: Hom-Maltsev, Hom-alternative, and Hom-Jordan algebras.submitted (arXiv: 1002.3944v1 [math.RA] (2010)). MR 2660540
.

Files

Files Size Format View
CommentatMathUnivCarolRetro_52-2011-4_2.pdf 508.8Kb application/pdf View/Open
Back to standard record
Partner of
EuDML logo