Previous |  Up |  Next

Article

Title: On the completeness of the system $\{t^{\lambda _{n}}\log ^{m_{n}}t\}$ in $C_{0}(E)$ (English)
Author: Yang, Xiangdong
Language: English
Journal: Czechoslovak Mathematical Journal
ISSN: 0011-4642 (print)
ISSN: 1572-9141 (online)
Volume: 62
Issue: 2
Year: 2012
Pages: 361-379
Summary lang: English
.
Category: math
.
Summary: Let $E=\bigcup _{n=1}^{\infty }I_{n}$ be the union of infinitely many disjoint closed intervals where $I_{n}=[a_{n}$, $b_{n}]$, $0<a_{1}<b_{1}<a_{2}<b_{2}<\dots <b_{n}<\dots $, $\lim _{n\rightarrow \infty }b_{n}=\infty .$ Let $\alpha (t)$ be a nonnegative function and $\{\lambda _{n}\}_{n=1}^{\infty }$ a sequence of distinct complex numbers. In this paper, a theorem on the completeness of the system $\{t^{\lambda _{n}}\log ^{m_{n}}t\}$ in $C_{0}(E)$ is obtained where $C_{0}(E)$ is the weighted Banach space consists of complex functions continuous on $E$ with $f(t){\rm e}^{-\alpha (t)}$ vanishing at infinity. (English)
Keyword: completeness
Keyword: Banach space
Keyword: complex Müntz theorem
MSC: 30B60
MSC: 30E10
MSC: 41A10
idZBL: Zbl 1265.30177
idMR: MR2990182
DOI: 10.1007/s10587-012-0035-4
.
Date available: 2012-06-08T09:40:10Z
Last updated: 2020-07-03
Stable URL: http://hdl.handle.net/10338.dmlcz/142834
.
Reference: [1] Boivin, A., Zhu, Ch.: On the completeness of the system $\{z^{\tau_{n}}\}$ in $L^{2}$.J. Approximation Theory 118 (2002), 1-19. MR 1928254
Reference: [2] Borichev, A. A., Sodin, M.: Krein's entire functions and the Bernstein approximation problem.Ill. J. Math. 45 (2001), 167-185. Zbl 0989.41003, MR 1849992, 10.1215/ijm/1258138261
Reference: [3] Borwein, P., Erdélyi, T.: Polynomials and Polynomial Inequalities.Springer-Verlag, New York (1995). Zbl 0840.26002, MR 1367960
Reference: [4] Branges, L. de: The Bernstein problem.Proc. Am. Math. Soc. 10 (1959), 825-832. Zbl 0092.06905, MR 0114080, 10.1090/S0002-9939-1959-0114080-0
Reference: [5] Deng, G. T.: Incompleteness and closure of a linear span of exponential system in a weighted Banach space.J. Approximation Theory 125 (2003), 1-9. Zbl 1036.30002, MR 2016836, 10.1016/j.jat.2003.09.004
Reference: [6] Deng, G. T.: On weighted polynomial approximation with gaps.Nagoya Math. J. 178 (2005), 55-61. Zbl 1082.41017, MR 2145315, 10.1017/S0027763000009119
Reference: [7] Deng, G. T.: Incompleteness and minimality of complex exponential system.Sci. China, Ser. A 50 (2007), 1467-1476. Zbl 1130.30028, MR 2390463, 10.1007/s11425-007-0093-5
Reference: [8] Halmos, P. R.: Measure Theory, 2nd printing, Graduate Texts in Mathematics. 18.Springer-Verlag, New York-Heidelberg-Berlin (1974). MR 0453532
Reference: [9] Izumi, S.-I., Kawata, T.: Quasi-analytic class and closure of $\{t^{n}\}$ in the interval $(-\infty, \infty)$.Tohoku Math. J. 43 (1937), 267-273.
Reference: [10] Levin, B. Y.: Lectures on Entire Functions, Translations of Mathematical Monographs, 150.Providence RI., American Mathematical Society (1996). MR 1400006, 10.1090/mmono/150/28
Reference: [11] Malliavin, P.: Sur quelques procédés d'extrapolation.Acta Math. 83 (1955), 179-255. Zbl 0067.05104, MR 0075297, 10.1007/BF02392523
Reference: [12] Mergelyan, S. N.: On the completeness of system of analytic functions.Amer. Math. Soc. Transl. Ser. 2 (1962), 109-166. MR 0131561
Reference: [13] Markushevich, A. I.: Theory of Functions of a Complex Variable, Selected Russian Publications in the Mathematical Sciences.Prentice-Hall (1965).
Reference: [14] Rudin, W.: Real and Complex Analysis, 3rd. ed.McGraw-Hill, New York (1987). Zbl 0925.00005, MR 0924157
Reference: [15] Sedletskij, A. M.: Nonharmonic analysis.J. Math. Sci., New York 116 (2003), 3551-3619. Zbl 1051.42018, MR 2024093
Reference: [16] Shen, X.: On the closure $\{ z^{\tau_{n}}\log^{j} z\} $ in a domain of the complex plane.Acta Math. Sinica 13 (1963), 405-418 Chinese Chinese Math. 4 (1963), 440-453 English.
Reference: [17] Shen, X.: On the completeness of $\{ z^{\tau_{n}}\log^{j} z\} $ on an unbounded curve of the complex plane.Acta Math. Sinica 13 (1963), 170-192 Chinese Chinese Math. 12 (1963), 921-950 English.
Reference: [18] Shen, X.: On approximation of functions in the complex plane by the system of functions $\{ z^{\tau_{n}}\log^{j} z\} $.Acta Math. Sinica 14 (1964), 406-414 Chinese Chinese Math. 5 (1965), 439-446 English. MR 0179534
Reference: [19] Yang, X. D.: Incompleteness of exponential system in the weighted Banach space.J. Approx. Theory 153 (2008), 73-79. Zbl 1149.30025, MR 2432554, 10.1016/j.jat.2008.01.004
Reference: [20] Zhu, Ch.: Some Results in Complex Approximation with Sequence of Complex Exponents.Thesis of the University of Werstern Ontario, Canada (1999).
Reference: [21] Zikkos, E.: On a theorem of normal Levinson and a variation of the Fabry gap theorem.Complex Variables, Theory Appl. 50 (2005), 229-255. MR 2125918, 10.1080/02781070500032804
.

Files

Files Size Format View
CzechMathJ_62-2012-2_5.pdf 337.1Kb application/pdf View/Open
Back to standard record
Partner of
EuDML logo