Previous |  Up |  Next


first Dirichlet eigenvalue; bicyclic graph; degree sequence
In this paper, we have investigated some properties of the first Dirichlet eigenvalue of a bicyclic graph with boundary condition. These results can be used to characterize the extremal bicyclic graphs with the smallest first Dirichlet eigenvalue among all the bicyclic graphs with a given graphic bicyclic degree sequence with minor conditions. Moreover, the extremal bicyclic graphs with the smallest first Dirichlet eigenvalue among all the bicycle graphs with fixed $k$ interior vertices of degree at least 3 are obtained.
[1] koğlu, T. Bıyı, Leydold, J.: Faber-Krahn type inequalities for trees. J. Comb. Theory, Ser. B 97 (2007), 159-174. DOI 10.1016/j.jctb.2006.04.005 | MR 2290318
[2] Friedman, J.: Some geometric aspects of graphs and their eigenfunctions. Duke Math. J. 69 (1993), 487-525. DOI 10.1215/S0012-7094-93-06921-9 | MR 1208809 | Zbl 0785.05066
[3] Leydold, J.: The geometry of regular trees with the Faber-Krahn property. Discrete Math. 245 (2002), 155-172. DOI 10.1016/S0012-365X(01)00139-X | MR 1887936 | Zbl 0999.05016
[4] Pruss, A. R.: Discrete convolution-rearrangement inequalities and the Faber-Krahn inequality on regular trees. Duke Math. J. 91 (1998), 463-514. DOI 10.1215/S0012-7094-98-09119-0 | MR 1604163 | Zbl 0943.05056
[5] Zhang, G. J., Zhang, J., Zhang, X. D.: Faber-Krahn Type Inequality for Unicyclic Graphs. Linear and Multilinear Algebra, DOI: 10.1080/03081087.2011.651722. DOI 10.1080/03081087.2011.651722
[6] Zhang, X. D.: The Laplacian spectral radii of trees with degree sequences. Discrete Math. 308 (2008), 3143-3150. DOI 10.1016/j.disc.2007.06.017 | MR 2423396 | Zbl 1156.05038
[7] Zhang, X. D.: The signless Laplacian spectral radius of graphs with given degree sequences. Discrete Appl. Math. 157 (2009), 2928-2937. DOI 10.1016/j.dam.2009.02.022 | MR 2537494 | Zbl 1213.05153
Partner of
EuDML logo