Previous |  Up |  Next

Article

Title: The first Dirichlet eigenvalue of bicyclic graphs (English)
Author: Zhang, Guang-Jun
Author: Zhang, Xiao-Dong
Language: English
Journal: Czechoslovak Mathematical Journal
ISSN: 0011-4642 (print)
ISSN: 1572-9141 (online)
Volume: 62
Issue: 2
Year: 2012
Pages: 441-451
Summary lang: English
.
Category: math
.
Summary: In this paper, we have investigated some properties of the first Dirichlet eigenvalue of a bicyclic graph with boundary condition. These results can be used to characterize the extremal bicyclic graphs with the smallest first Dirichlet eigenvalue among all the bicyclic graphs with a given graphic bicyclic degree sequence with minor conditions. Moreover, the extremal bicyclic graphs with the smallest first Dirichlet eigenvalue among all the bicycle graphs with fixed $k$ interior vertices of degree at least 3 are obtained. (English)
Keyword: first Dirichlet eigenvalue
Keyword: bicyclic graph
Keyword: degree sequence
MSC: 05C35
MSC: 05C50
idZBL: Zbl 1265.05429
idMR: MR2990185
DOI: 10.1007/s10587-012-0038-1
.
Date available: 2012-06-08T09:43:13Z
Last updated: 2020-07-03
Stable URL: http://hdl.handle.net/10338.dmlcz/142837
.
Reference: [1] koğlu, T. Bıyı, Leydold, J.: Faber-Krahn type inequalities for trees.J. Comb. Theory, Ser. B 97 (2007), 159-174. MR 2290318, 10.1016/j.jctb.2006.04.005
Reference: [2] Friedman, J.: Some geometric aspects of graphs and their eigenfunctions.Duke Math. J. 69 (1993), 487-525. Zbl 0785.05066, MR 1208809, 10.1215/S0012-7094-93-06921-9
Reference: [3] Leydold, J.: The geometry of regular trees with the Faber-Krahn property.Discrete Math. 245 (2002), 155-172. Zbl 0999.05016, MR 1887936, 10.1016/S0012-365X(01)00139-X
Reference: [4] Pruss, A. R.: Discrete convolution-rearrangement inequalities and the Faber-Krahn inequality on regular trees.Duke Math. J. 91 (1998), 463-514. Zbl 0943.05056, MR 1604163, 10.1215/S0012-7094-98-09119-0
Reference: [5] Zhang, G. J., Zhang, J., Zhang, X. D.: Faber-Krahn Type Inequality for Unicyclic Graphs.Linear and Multilinear Algebra, DOI: 10.1080/03081087.2011.651722. 10.1080/03081087.2011.651722
Reference: [6] Zhang, X. D.: The Laplacian spectral radii of trees with degree sequences.Discrete Math. 308 (2008), 3143-3150. Zbl 1156.05038, MR 2423396, 10.1016/j.disc.2007.06.017
Reference: [7] Zhang, X. D.: The signless Laplacian spectral radius of graphs with given degree sequences.Discrete Appl. Math. 157 (2009), 2928-2937. Zbl 1213.05153, MR 2537494, 10.1016/j.dam.2009.02.022
.

Files

Files Size Format View
CzechMathJ_62-2012-2_8.pdf 280.7Kb application/pdf View/Open
Back to standard record
Partner of
EuDML logo