Previous |  Up |  Next

Article

Title: Numerical range of operators acting on Banach spaces (English)
Author: Jahedi, Khadijeh
Author: Yousefi, Bahmann
Language: English
Journal: Czechoslovak Mathematical Journal
ISSN: 0011-4642 (print)
ISSN: 1572-9141 (online)
Volume: 62
Issue: 2
Year: 2012
Pages: 495-503
Summary lang: English
.
Category: math
.
Summary: The aim of the paper is to propose a definition of numerical range of an operator on reflexive Banach spaces. Under this definition the numerical range will possess the basic properties of a canonical numerical range. We will determine necessary and sufficient conditions under which the numerical range of a composition operator on a weighted Hardy space is closed. We will also give some necessary conditions to show that when the closure of the numerical range of a composition operator on a small weighted Hardy space has zero. (English)
Keyword: numerical range
Keyword: weighted Hardy space
Keyword: compact operator
Keyword: composition operator
MSC: 30H10
MSC: 47A12
MSC: 47B33
MSC: 47B37
idZBL: Zbl 1259.47009
idMR: MR2990189
DOI: 10.1007/s10587-012-0024-7
.
Date available: 2012-06-08T09:49:02Z
Last updated: 2020-07-03
Stable URL: http://hdl.handle.net/10338.dmlcz/142841
.
Reference: [1] Bauer, F. L.: On the field of values subordinate to a norm.Numer. Math. 4 (1962), 103-113. Zbl 0117.11004, MR 0145329, 10.1007/BF01386300
Reference: [2] Bonsall, F. F., Duncan, J.: Numerical Ranges II.London Mathematical Society Lecture Note Series. 10. London: Cambridge University Press. VII (1973). Zbl 0262.47001, MR 0442682
Reference: [3] Cowen, C. C., MacCluer, B. D.: Composition Operators on Spaces of Analytic Functions.Studies in Advanced Mathematics. Boca Raton, FL: CRC Press. xii (1995). Zbl 0873.47017, MR 1397026
Reference: [4] Gustafson, K. E., Rao, D. K. M.: Numerical Range. The Field of Values of Linear Operators and Matrices.Universitext. New York, NY: Springer. xiv (1996). Zbl 0874.47003, MR 1417493
Reference: [5] Halmos, P. R.: A Hilbert Space Problem Book.Graduate Texts in Mathematics, 19. New York-Heidelberg-Berlin: Springer-Verlag. XVII (1982). Zbl 0496.47001, MR 0675952
Reference: [6] Hausdorff, F.: Der Wertvorrat einer Bilinearform.Math. Zeitschr. 3 (1919), 314-316 German. MR 1544350, 10.1007/BF01292610
Reference: [7] Jahedi, K., Yousefi, B.: On the weighted Hardy spaces.J. Math. Extension 1 (2006), 45-55. MR 2985714
Reference: [8] Lumer, G.: Semi-inner-product spaces.Trans. Am. Math. Soc. 100 (1961), 29-43. Zbl 0102.32701, MR 0133024, 10.1090/S0002-9947-1961-0133024-2
Reference: [9] Seddighi, K., Yousefi, B.: On the reflexivity of operators on function spaces.Proc. Am. Math. Soc. 116 (1992), 45-52. Zbl 0806.47026, MR 1104402, 10.1090/S0002-9939-1992-1104402-5
Reference: [10] Shapiro, J. H.: Composition Operators and Classical Function Theory.Universitext: Tracts in Mathematics. New York: Springer-Verlag. xiii (1993). Zbl 0791.30033, MR 1237406
Reference: [11] Shapiro, J.: Compact composition operators on spaces of boundary-regular holomorphic functions.Proc. Am. Math. Soc. 100 (1987), 49-57. Zbl 0622.47028, MR 0883400, 10.1090/S0002-9939-1987-0883400-9
Reference: [12] Sheilds, A. L.: Weighted shift operators and analytic function theory.Topic Operator Theory, math. Survays 13 (1974), 49-128. 10.1090/surv/013/02
Reference: [13] Toeplitz, O.: Das algebraische Analogen zu einem Satze von Fejér.Math. Zs. 2 (1918), 187-197. MR 1544315, 10.1007/BF01212904
Reference: [14] Yang, K. B., Zhou, Z. H.: Essentional norm of difference of composition operators on Bloch space.Czech. Math. J. 60 (2010), 1139-1152. MR 2738975, 10.1007/s10587-010-0079-2
Reference: [15] Yousefi, B.: On the space $l^p(\beta)$.Rend. Circ. Mat. Palermo, II. Ser. 49 (2000), 115-120. MR 1753456
Reference: [16] Yousefi, B., Jahedi, K.: Application of Rosenthal-Dor Theorem on Banach space of formal power series.Islamic Azad University Journal of Sciences. Fall (2001), 3147-3168. MR 1898505
Reference: [17] Yousefi, B.: Unicellularity of the multiplication operator on Banach spaces of formal power series.Stud. Math. 147 (2001), 201-209. Zbl 0995.47020, MR 1853768, 10.4064/sm147-3-1
Reference: [18] Yousefi, B.: Bounded analytic structure of the Banach space of formal power series.Rend. Circ. Mat. Palermo (2) 51 (2002), 403-410. Zbl 1194.47035, MR 1947463, 10.1007/BF02871850
Reference: [19] Yousefi, B., Jahedi, S.: Composition operators on Banach space of formal power series.Boll. Unione Mat. Ital., Sez. B, Artic. Ric. Mat. (8) 6 (2003), 481-487. MR 1988217
Reference: [20] Yousefi, B.: Strictly cyclic algebra of operators acting on Banach spaces $H^{p}(\beta)$.Czech. Math. J. 54 (2004), 261-266. MR 2040238, 10.1023/B:CMAJ.0000027266.18148.90
Reference: [21] Yousefi, B., Soltani, R.: On the Hilbert space of formal power series.Honam Math. Jour. 26 (2004), 299-308. MR 2155909
Reference: [22] Yousefi, B.: Composition operators on weighted Hardy spaces.Kyungpook Math. J. 44 (2004), 319-324. Zbl 1085.47031, MR 2095415
Reference: [23] Yousefi, B., Dehghan, Y. N.: Reflexivity on weighted Hardy spaces.Southeast Asian Bull. Math. 28 (2004), 587-593. Zbl 1081.47039, MR 2084748
Reference: [24] Yousefi, B.: On the eighteenth question of Allen Shields.Int. J. Math. 16 (2005), 37-42. Zbl 1081.47038, MR 2115676, 10.1142/S0129167X05002758
Reference: [25] Yousefi, B., Kashkuli, A. I.: Cyclicity and uncellularity of the differentiation operator on Banach spaces of formal power series.Math. Proc. R. Ir. Acad. 105A (2005), 1-7. Zbl 1089.47026, MR 2138718, 10.3318/PRIA.2005.105.1.1
Reference: [26] Yousefi, B., Haghkhah, S.: Numerical range of composition operators on weighted Hardy spaces.Int. J. Contemp. Math. Sci. 2 (2007), 1341-1346. Zbl 1159.47011, MR 2380196, 10.12988/ijcms.2007.07139
.

Files

Files Size Format View
CzechMathJ_62-2012-2_12.pdf 250.6Kb application/pdf View/Open
Back to standard record
Partner of
EuDML logo