Previous |  Up |  Next

Article

Title: Conditions under which the least compactification of a regular continuous frame is perfect (English)
Author: Baboolal, Dharmanand
Language: English
Journal: Czechoslovak Mathematical Journal
ISSN: 0011-4642 (print)
ISSN: 1572-9141 (online)
Volume: 62
Issue: 2
Year: 2012
Pages: 505-515
Summary lang: English
.
Category: math
.
Summary: We characterize those regular continuous frames for which the least compactification is a perfect compactification. Perfect compactifications are those compactifications of frames for which the right adjoint of the compactification map preserves disjoint binary joins. Essential to our characterization is the construction of the frame analog of the two-point compactification of a locally compact Hausdorff space, and the concept of remainder in a frame compactification. Indeed, one of the characterizations is that the remainder of the regular continuous frame in each of its compactifications is compact and connected. (English)
Keyword: regular continuous frame
Keyword: perfect compactification
MSC: 06B35
MSC: 06D20
MSC: 06D22
MSC: 54D35
idZBL: Zbl 1265.06028
idMR: MR2990190
DOI: 10.1007/s10587-012-0025-6
.
Date available: 2012-06-08T09:49:42Z
Last updated: 2020-07-03
Stable URL: http://hdl.handle.net/10338.dmlcz/142842
.
Reference: [1] Aarts, J. M., Boas, P. Van Emde: Continua as remainders in compact extensions.Nieuw Arch. Wisk., III. Ser. 15 (1967), 34-37. MR 0214033
Reference: [2] Baboolal, D.: Perfect compactifications of frames.Czech. Math. J. 61(136) (2011), 845-861. MR 2853096, 10.1007/s10587-011-0032-z
Reference: [3] Banaschewski, B.: Compactification of frames.Math. Nachr. 149 (1990), 105-115. Zbl 0722.54018, MR 1124796, 10.1002/mana.19901490107
Reference: [4] Johnstone, P. T.: Stone Spaces.Cambridge University Press Cambridge (1982). Zbl 0499.54001, MR 0698074
Reference: [5] Jung, C. F. K.: Locally compact spaces whose Alexandroff one-point compactifications are perfect.Colloq. Math. 27 (1973), 247-249. Zbl 0262.54015, MR 0326661, 10.4064/cm-27-2-247-249
Reference: [6] Sklyarenko, E. G.: Some questions in the theory of bicompactifications.Am. Math. Soc. Transl., II. Ser. 58 (1966), 216-244. 10.1090/trans2/058/11
.

Files

Files Size Format View
CzechMathJ_62-2012-2_13.pdf 263.8Kb application/pdf View/Open
Back to standard record
Partner of
EuDML logo