Previous |  Up |  Next

Article

Title: A characterization of Fuchsian groups acting on complex hyperbolic spaces (English)
Author: Fu, Xi
Author: Li, Liulan
Author: Wang, Xiantao
Language: English
Journal: Czechoslovak Mathematical Journal
ISSN: 0011-4642 (print)
ISSN: 1572-9141 (online)
Volume: 62
Issue: 2
Year: 2012
Pages: 517-525
Summary lang: English
.
Category: math
.
Summary: Let $G\subset {\bf SU}(2,1)$ be a non-elementary complex hyperbolic Kleinian group. If $G$ preserves a complex line, then $G $ is $\mathbb {C}$-Fuchsian; if $ G $ preserves a Lagrangian plane, then $ G $ is $\mathbb {R}$-Fuchsian; $ G $ is Fuchsian if $ G $ is either $\mathbb {C}$-Fuchsian or $\mathbb {R}$-Fuchsian. In this paper, we prove that if the traces of all elements in $ G $ are real, then $ G $ is Fuchsian. This is an analogous result of Theorem V.G. 18 of B. Maskit, Kleinian Groups, Springer-Verlag, Berlin, 1988, in the setting of complex hyperbolic isometric groups. As an application of our main result, we show that $ G $ is conjugate to a subgroup of ${\bf S}(U(1)\times U(1,1))$ or ${\bf SO}(2,1)$ if each loxodromic element in $G $ is hyperbolic. Moreover, we show that the converse of our main result does not hold by giving a $\mathbb {C}$-Fuchsian group. (English)
Keyword: $\mathbb {R}$-Fuchsian group
Keyword: $\mathbb {C}$-Fuchsian group
Keyword: complex line
Keyword: $\mathbb {R}$-plane
Keyword: trace
MSC: 20H10
MSC: 30F35
MSC: 30F40
idZBL: Zbl 1265.30182
idMR: MR2990191
DOI: 10.1007/s10587-012-0026-5
.
Date available: 2012-06-08T09:50:27Z
Last updated: 2020-07-03
Stable URL: http://hdl.handle.net/10338.dmlcz/142843
.
Reference: [1] Beardon, A. F.: The Geometry of Discrete Groups.Graduate Texts in Mathematics, Vol. 91, Springer, New York (1983). Zbl 0528.30001, MR 0698777, 10.1007/978-1-4612-1146-4
Reference: [2] Chen, S. S., Greenberg, L.: Hyperbolic spaces.Contribut. to Analysis, Collect. of Papers dedicated to Lipman Bers (1974), 49-87. Zbl 0295.53023, MR 0377765
Reference: [3] Goldman, W. M.: Complex Hyperbolic Geometry.Oxford: Clarendon Press (1999). Zbl 0939.32024, MR 1695450
Reference: [4] Kamiya, S.: Notes on elements of $U(1,n;\mathbb{C})$.Hiroshima Math. J. 21 (1991), 23-45. MR 1091431, 10.32917/hmj/1206128922
Reference: [5] Maskit, B.: Kleinian Groups.Springer-Verlag, Berlin (1988). Zbl 0627.30039, MR 0959135
Reference: [6] Parker, J. R., Platis, I. D.: Complex hyperbolic Fenchel-Nielsen coordinates.Topology 47 (2008), 101-135. Zbl 1169.30019, MR 2415771, 10.1016/j.top.2007.08.001
Reference: [7] Parker, J. R.: Notes on Complex Hyperbolic Geometry.Cambridge University Press, Preprint (2004). MR 1695450
.

Files

Files Size Format View
CzechMathJ_62-2012-2_14.pdf 243.6Kb application/pdf View/Open
Back to standard record
Partner of
EuDML logo