Previous |  Up |  Next

Article

Title: Approximation properties of bivariate complex $q$-Bernstein polynomials in the case $q>1$ (English)
Author: Mahmudov, Nazim I.
Language: English
Journal: Czechoslovak Mathematical Journal
ISSN: 0011-4642 (print)
ISSN: 1572-9141 (online)
Volume: 62
Issue: 2
Year: 2012
Pages: 557-566
Summary lang: English
.
Category: math
.
Summary: In the paper, we discuss convergence properties and Voronovskaja type theorem for bivariate $q$-Bernstein polynomials for a function analytic in the polydisc $D_{R_{1}}\times D_{R_{2}}=\{z\in C\colon \vert z\vert <R_{1}\} \times \{ z\in C\colon \vert z\vert <R_{1}\}$ for arbitrary fixed $q>1$. We give quantitative Voronovskaja type estimates for the bivariate $q$-Bernstein polynomials for $q>1$. In the univariate case the similar results were obtained by S. Ostrovska: $q$-Bernstein polynomials and their iterates. J. Approximation Theory 123 (2003), 232–255. and S. G. Gal: Approximation by Complex Bernstein and Convolution Type Operators. Series on Concrete and Applicable Mathematics 8. World Scientific, New York, 2009. (English)
Keyword: $q$-Bernstein polynomials
Keyword: modulus of continuity
Keyword: Voronovskaja type theorem
MSC: 33D15
MSC: 41A10
MSC: 41A35
idZBL: Zbl 1265.33036
idMR: MR2990194
DOI: 10.1007/s10587-012-0029-2
.
Date available: 2012-06-08T09:53:13Z
Last updated: 2020-07-03
Stable URL: http://hdl.handle.net/10338.dmlcz/142846
.
Reference: [1] Butzer, P. L.: On two-dimensional Bernstein polynomials.Can. J. Math. 5 (1953), 107-113. Zbl 0050.07002, MR 0052573, 10.4153/CJM-1953-014-2
Reference: [2] Gal, S. G.: Approximation by Complex Bernstein and Convolution Type Operators. Series on Concrete and Applicable Mathematics 8.World Scientific New York (2009). MR 2560489
Reference: [3] Hildebrandt, T. H., Schoenberg, I. J.: On linear functional operations and the moment problem for a finite interval in one or several dimensions.Ann. Math. 34 (1933), 317-328. Zbl 0006.40204, MR 1503109, 10.2307/1968205
Reference: [4] Mahmudov, N. I.: Korovkin-type theorems and applications.Cent. Eur. J. Math. 7 (2009), 348-356. Zbl 1179.41024, MR 2506971, 10.2478/s11533-009-0006-7
Reference: [5] Ostrovska, S.: $q$-Bernstein polynomials and their iterates.J. Approximation Theory 123 (2003), 232-255. Zbl 1093.41013, MR 1990098, 10.1016/S0021-9045(03)00104-7
Reference: [6] Ostrovska, S.: The sharpness of convergence results for $q$-Bernstein polynomials in the case $q>1$.Czech. Math. J. 58 (2008), 1195-1206. Zbl 1174.41010, MR 2471176, 10.1007/s10587-008-0079-7
Reference: [7] Phillips, G. M.: Bernstein polynomials based on the $q$-integers.Ann. Numer. Math. 4 (1997), 511-518. Zbl 0881.41008, MR 1422700
Reference: [8] Wang, H., Wu, X.: Saturation of convergence for $q$-Bernstein polynomials in the case $q>1$.J. Math. Anal. Appl. 337 (2008), 744-750. MR 2356108, 10.1016/j.jmaa.2007.04.014
Reference: [9] Wu, Z.: The saturation of convergence on the interval $[0;1]$ for the $q$-Bernstein polynomials in the case $q>1$.J. Math. Anal. Appl. 357 (2009), 137-141. Zbl 1236.41011, MR 2526813, 10.1016/j.jmaa.2009.04.003
.

Files

Files Size Format View
CzechMathJ_62-2012-2_17.pdf 237.0Kb application/pdf View/Open
Back to standard record
Partner of
EuDML logo