Title:
|
Bounds for the (Laplacian) spectral radius of graphs with parameter $\alpha $ (English) |
Author:
|
Tian, Gui-Xian |
Author:
|
Huang, Ting-Zhu |
Language:
|
English |
Journal:
|
Czechoslovak Mathematical Journal |
ISSN:
|
0011-4642 (print) |
ISSN:
|
1572-9141 (online) |
Volume:
|
62 |
Issue:
|
2 |
Year:
|
2012 |
Pages:
|
567-580 |
Summary lang:
|
English |
. |
Category:
|
math |
. |
Summary:
|
Let $G$ be a simple connected graph of order $n$ with degree sequence $(d_1,d_2,\ldots ,d_n)$. Denote $(^\alpha t)_i = \sum \nolimits _{j\colon i \sim j} {d_j^\alpha }$, $(^\alpha m)_i = {(^\alpha t)_i }/{d_i^\alpha }$ and $(^\alpha N)_i = \sum \nolimits _{j\colon i \sim j} {(^\alpha t)_j }$, where $\alpha $ is a real number. Denote by $\lambda _1(G)$ and $\mu _1(G)$ the spectral radius of the adjacency matrix and the Laplacian matrix of $G$, respectively. In this paper, we present some upper and lower bounds of $\lambda _1(G)$ and $\mu _1(G)$ in terms of $(^\alpha t)_i $, $(^\alpha m)_i $ and $(^\alpha N)_i $. Furthermore, we also characterize some extreme graphs which attain these upper bounds. These results theoretically improve and generalize some known results. (English) |
Keyword:
|
graph |
Keyword:
|
adjacency matrix |
Keyword:
|
Laplacian matrix |
Keyword:
|
spectral radius |
Keyword:
|
bound |
MSC:
|
05C50 |
MSC:
|
15A18 |
idZBL:
|
Zbl 1265.05418 |
idMR:
|
MR2990195 |
DOI:
|
10.1007/s10587-012-0030-9 |
. |
Date available:
|
2012-06-08T09:54:18Z |
Last updated:
|
2020-07-03 |
Stable URL:
|
http://hdl.handle.net/10338.dmlcz/142847 |
. |
Reference:
|
[1] Berman, A., Zhang, X.-D.: On the spectral radius of graphs with cut vertices.J. Combin. Theory, Ser. B 83 (2001), 233-240. Zbl 1023.05098, MR 1866719, 10.1006/jctb.2001.2052 |
Reference:
|
[2] Brankov, V., Hansen, P., Stevanović, D.: Automated cunjectures on upper bounds for the largest Laplacian eigenvalue of graphs.Linear Algebra Appl. 414 (2006), 407-424. MR 2213408 |
Reference:
|
[3] Cvetković, D., Doob, M., Sachs, H.: Spectra of Graphs. Theory and Application.Deutscher Verlag der Wissenschaften Berlin (1980). Zbl 0458.05042, MR 0572262 |
Reference:
|
[4] Das, K. C., Kumar, P.: Some new bounds on the spectral radius of graphs.Discrete Math. 281 (2004), 149-161. Zbl 1042.05060, MR 2047763, 10.1016/j.disc.2003.08.005 |
Reference:
|
[5] Favaron, O., Mahéo, M., Saclé, J.-F.: Some eigenvalue properties in graphs (Conjectures of Graffiti---II).Discrete Math. 111 (1993), 197-220. Zbl 0785.05065, MR 1210097, 10.1016/0012-365X(93)90156-N |
Reference:
|
[6] Hofmeister, M.: Spectral radius and degree sequence.Math. Nachr. 139 (1988), 37-44. Zbl 0695.05046, MR 0978106, 10.1002/mana.19881390105 |
Reference:
|
[7] Hong, Y., Zhang, X.-D.: Sharp upper and lower bounds for largest eigenvalue of the Laplacian matrices of trees.Discrete Math. 296 (2005), 187-197. Zbl 1068.05044, MR 2154712, 10.1016/j.disc.2005.04.001 |
Reference:
|
[8] Liu, H., Lu, M.: Bounds for the Laplacian spectral radius of graphs..Linear Multilinear Algebra 58 (2010), 113-119. Zbl 1217.05148, MR 2641527, 10.1080/03081080802450021 |
Reference:
|
[9] Liu, H., Lu, M., Tian, F.: Some upper bounds for the energy of graphs.J. Math. Chem. 41 (2007), 45-57. Zbl 1110.92070, MR 2305216, 10.1007/s10910-006-9183-9 |
Reference:
|
[10] Nikiforov, V.: The energy of graphs and matrices.J. Math. Anal. Appl. 326 (2007), 1472-1475. Zbl 1113.15016, MR 2280998, 10.1016/j.jmaa.2006.03.072 |
Reference:
|
[11] Shi, L.: Bounds on the (Laplacian) spectral radius of graphs.Linear Algebra Appl. 422 (2007), 755-770. Zbl 1113.05065, MR 2305155, 10.1016/j.laa.2006.12.003 |
Reference:
|
[12] Tian, G.-X., Huang, T.-Z., Zhou, B.: A note on sum of powers of the Laplacian eigenvalues of bipartite graphs.Linear Algebra Appl. 430 (2009), 2503-2510. Zbl 1165.05020, MR 2508309 |
Reference:
|
[13] Yu, A., Lu, M., Tian, F.: On the spectral radius of graphs.Linear Algebra Appl. 387 (2004), 41-49. Zbl 1041.05051, MR 2069267, 10.1016/j.laa.2004.01.020 |
Reference:
|
[14] Yu, A., Lu, M., Tian, F.: New upper bounds for the energy of graphs.MATCH Commun. Math. Comput. Chem. 53 (2005), 441-448. Zbl 1081.05067, MR 2134203 |
Reference:
|
[15] Zhou, B.: Energy of a graph.MATCH Commun. Math. Comput. Chem. 51 (2004), 111-118. Zbl 1106.05068, MR 2063930 |
. |