Previous |  Up |  Next

Article

Title: Bounds for the (Laplacian) spectral radius of graphs with parameter $\alpha $ (English)
Author: Tian, Gui-Xian
Author: Huang, Ting-Zhu
Language: English
Journal: Czechoslovak Mathematical Journal
ISSN: 0011-4642 (print)
ISSN: 1572-9141 (online)
Volume: 62
Issue: 2
Year: 2012
Pages: 567-580
Summary lang: English
.
Category: math
.
Summary: Let $G$ be a simple connected graph of order $n$ with degree sequence $(d_1,d_2,\ldots ,d_n)$. Denote $(^\alpha t)_i = \sum \nolimits _{j\colon i \sim j} {d_j^\alpha }$, $(^\alpha m)_i = {(^\alpha t)_i }/{d_i^\alpha }$ and $(^\alpha N)_i = \sum \nolimits _{j\colon i \sim j} {(^\alpha t)_j }$, where $\alpha $ is a real number. Denote by $\lambda _1(G)$ and $\mu _1(G)$ the spectral radius of the adjacency matrix and the Laplacian matrix of $G$, respectively. In this paper, we present some upper and lower bounds of $\lambda _1(G)$ and $\mu _1(G)$ in terms of $(^\alpha t)_i $, $(^\alpha m)_i $ and $(^\alpha N)_i $. Furthermore, we also characterize some extreme graphs which attain these upper bounds. These results theoretically improve and generalize some known results. (English)
Keyword: graph
Keyword: adjacency matrix
Keyword: Laplacian matrix
Keyword: spectral radius
Keyword: bound
MSC: 05C50
MSC: 15A18
idZBL: Zbl 1265.05418
idMR: MR2990195
DOI: 10.1007/s10587-012-0030-9
.
Date available: 2012-06-08T09:54:18Z
Last updated: 2020-07-03
Stable URL: http://hdl.handle.net/10338.dmlcz/142847
.
Reference: [1] Berman, A., Zhang, X.-D.: On the spectral radius of graphs with cut vertices.J. Combin. Theory, Ser. B 83 (2001), 233-240. Zbl 1023.05098, MR 1866719, 10.1006/jctb.2001.2052
Reference: [2] Brankov, V., Hansen, P., Stevanović, D.: Automated cunjectures on upper bounds for the largest Laplacian eigenvalue of graphs.Linear Algebra Appl. 414 (2006), 407-424. MR 2213408
Reference: [3] Cvetković, D., Doob, M., Sachs, H.: Spectra of Graphs. Theory and Application.Deutscher Verlag der Wissenschaften Berlin (1980). Zbl 0458.05042, MR 0572262
Reference: [4] Das, K. C., Kumar, P.: Some new bounds on the spectral radius of graphs.Discrete Math. 281 (2004), 149-161. Zbl 1042.05060, MR 2047763, 10.1016/j.disc.2003.08.005
Reference: [5] Favaron, O., Mahéo, M., Saclé, J.-F.: Some eigenvalue properties in graphs (Conjectures of Graffiti---II).Discrete Math. 111 (1993), 197-220. Zbl 0785.05065, MR 1210097, 10.1016/0012-365X(93)90156-N
Reference: [6] Hofmeister, M.: Spectral radius and degree sequence.Math. Nachr. 139 (1988), 37-44. Zbl 0695.05046, MR 0978106, 10.1002/mana.19881390105
Reference: [7] Hong, Y., Zhang, X.-D.: Sharp upper and lower bounds for largest eigenvalue of the Laplacian matrices of trees.Discrete Math. 296 (2005), 187-197. Zbl 1068.05044, MR 2154712, 10.1016/j.disc.2005.04.001
Reference: [8] Liu, H., Lu, M.: Bounds for the Laplacian spectral radius of graphs..Linear Multilinear Algebra 58 (2010), 113-119. Zbl 1217.05148, MR 2641527, 10.1080/03081080802450021
Reference: [9] Liu, H., Lu, M., Tian, F.: Some upper bounds for the energy of graphs.J. Math. Chem. 41 (2007), 45-57. Zbl 1110.92070, MR 2305216, 10.1007/s10910-006-9183-9
Reference: [10] Nikiforov, V.: The energy of graphs and matrices.J. Math. Anal. Appl. 326 (2007), 1472-1475. Zbl 1113.15016, MR 2280998, 10.1016/j.jmaa.2006.03.072
Reference: [11] Shi, L.: Bounds on the (Laplacian) spectral radius of graphs.Linear Algebra Appl. 422 (2007), 755-770. Zbl 1113.05065, MR 2305155, 10.1016/j.laa.2006.12.003
Reference: [12] Tian, G.-X., Huang, T.-Z., Zhou, B.: A note on sum of powers of the Laplacian eigenvalues of bipartite graphs.Linear Algebra Appl. 430 (2009), 2503-2510. Zbl 1165.05020, MR 2508309
Reference: [13] Yu, A., Lu, M., Tian, F.: On the spectral radius of graphs.Linear Algebra Appl. 387 (2004), 41-49. Zbl 1041.05051, MR 2069267, 10.1016/j.laa.2004.01.020
Reference: [14] Yu, A., Lu, M., Tian, F.: New upper bounds for the energy of graphs.MATCH Commun. Math. Comput. Chem. 53 (2005), 441-448. Zbl 1081.05067, MR 2134203
Reference: [15] Zhou, B.: Energy of a graph.MATCH Commun. Math. Comput. Chem. 51 (2004), 111-118. Zbl 1106.05068, MR 2063930
.

Files

Files Size Format View
CzechMathJ_62-2012-2_18.pdf 284.4Kb application/pdf View/Open
Back to standard record
Partner of
EuDML logo