Previous |  Up |  Next

Article

Keywords:
quasilinear hyperbolic system; mixed initial-boundary value problem; global classical solution; weak linear degeneracy; matching conditon
Summary:
In this paper, the mixed initial-boundary value problem for inhomogeneous quasilinear strictly hyperbolic systems with nonlinear boundary conditions in the first quadrant $\{(t,x)\colon t \geq 0, x \geq 0\}$ is investigated. Under the assumption that the right-hand side satisfies a matching condition and the system is strictly hyperbolic and weakly linearly degenerate, we obtain the global existence and uniqueness of a $C^1$ solution and its $L^1$ stability with certain small initial and boundary data.
References:
[1] Bressan, A.: Contractive metrics for nonlinear hyperbolic systems. Indiana Univ. Math. J. 37 (1988), 409-420. DOI 10.1512/iumj.1988.37.37021 | MR 0963510 | Zbl 0632.35041
[2] Bressan, A., Liu, T.-P., Yang, T.: $L^1$ stability estimates for $n\times n$ conservation laws. Arch. Ration. Mech. Anal. 149 (1999), 1-22. DOI 10.1007/s002050050165 | MR 1723032
[3] Chen, Y. L.: Global classical solution of the mixed initial-boundary value problem for a kind of the first order quasilinear hyperbolic system. J. Fudan Univ. Nat. Sci. 45 (2006), 625-631. MR 2273247
[4] Greenberg, J. M., Li, T.-T.: The effect of boundary damping for the quasilinear wave equation. J. Differ. Equations 52 (1984), 66-75. DOI 10.1016/0022-0396(84)90135-9 | MR 0737964 | Zbl 0576.35080
[5] Hörmander, L.: The lifespan of classical solutions of nonlinear hyperbolic equations. Lecture Notes Math. 1256 Springer Berlin (1987), 214-280. MR 0897781 | Zbl 0632.35045
[6] John, F.: Formation of singularities in one-dimensional nonlinear wave propagation. Commun. Pure Appl. Math. 27 (1974), 377-405. DOI 10.1002/cpa.3160270307 | MR 0369934 | Zbl 0302.35064
[7] Kong, D. X.: Cauchy problem for first order quasilinear hyperbolic systems. J. Fudan Univ. Nat. Sci. 33 (1994), 705-708. MR 1341024 | Zbl 0938.35573
[8] Li, S. M.: Cauchy problem for general first order inhomogeneous quasilinear hyperbolic systems. J. Partial Differ. Equations 15 (2002), 46-68. MR 1892623 | Zbl 1002.35081
[9] Li, T.-T.: Global Classical Solutions for Quasilinear Hperbolic Systems. Masson/John Wiley Paris/Chichester (1994). MR 1291392
[10] Li, T.-T., Peng, Y.-J.: The mixed initial-boundary value problem for reducible quasilinear hyperbolic systems with linearly-degenerate characteristics. Nonlinear Anal., Theory Methods Appl. 52 (2003), 573-583. DOI 10.1016/S0362-546X(02)00123-2 | MR 1937641 | Zbl 1027.35065
[11] Li, T.-T., Peng, Y.-J.: Global $C^1$ solution to the initial-boundary value problem for diagonal hyperbolic systems with linearly degenerate characteristics. J. Partial Differ. Equations 16 (2003), 8-17. MR 1995402 | Zbl 1045.35043
[12] Li, T.-T., Wang, L. B.: Global classical solutions to a kind of mixed initial-boundary value problem for quasilinear hyperbolic systems. Discrete Contin. Dyn. Syst. 12 (2005), 59-78. MR 2121249 | Zbl 1067.35044
[13] Li, T.-T., Yu, W.-C.: Boundary Value Problems for Quasilinear Hyperbolic Systems, Series V. Duke University, Mathematical Department Durham (1985).
[14] Li, T.-T., Zhou, Y., Kong, D.-X.: Weak linear degeneracy and global classical solutions for general quasilinear hyperbolic systems. Commun. Partial Differ. Equations 19 (1994), 1263-1317. DOI 10.1080/03605309408821055 | MR 1284811 | Zbl 0810.35054
[15] Li, T.-T., Zhou, Y., Kong, D.-X.: Global classical solutions for general quasilinear hyperbolic systems with decay initial data. Nonlinear Anal., Theory Methods Appl. 28 (1997), 1299-1232. MR 1428653 | Zbl 0874.35068
[16] Liu, T.-P.: Development of singularities in the nonlinear waves for quasi-linear hyperbolic patial differential equations. J. Differ. Equations 33 (1979), 92-111. DOI 10.1016/0022-0396(79)90082-2 | MR 0540819
[17] Liu, T.-P., Yang, T.: Well-posedness theory for hyperbolic conservation laws. Commun. Pure Appl. Math. 52 (1999), 1553-1586. DOI 10.1002/(SICI)1097-0312(199912)52:12<1553::AID-CPA3>3.0.CO;2-S | MR 1711037 | Zbl 1034.35073
[18] Qin, T. H.: Global smooth solutions of dissipative boundary value problems for first order quasilinear hyperbolic systems. Chin. Ann. Math., Ser. B 6 (1985), 289-298. MR 0842971 | Zbl 0584.35068
[19] Wu, P.-X.: Global classical solutions to the Cauchy problem for general first order inhomogeneous quasilinear hyperbolic systems. Chin. Ann. Math., Ser. A 27 (2006), 93-108 Chinese. MR 2208263 | Zbl 1097.35099
[20] Zhou, Y.: Global classical solutions to quasilinear hyperbolic systems with weak linear degeneracy. Chin. Ann. Math., Ser. B 25 (2004), 37-56. DOI 10.1142/S0252959904000044 | MR 2033949 | Zbl 1059.35078
[21] Zhou, Y., Yang, Y.-F.: Global classical solutions of mixed initial-boundary value problem for quasilinear hyperbolic systems. Nonlinear Anal., Theory Methods Appl. 73 (2010), 1543-1561. DOI 10.1016/j.na.2010.04.057 | MR 2661340 | Zbl 1195.35205
Partner of
EuDML logo