Previous |  Up |  Next

Article

Title: A New Sequence Space Defined by a Sequence of Orlicz Functions over $n$-Normed Spaces (English)
Author: Raj, Kuldip
Author: Sharma, Sunil K.
Language: English
Journal: Acta Universitatis Palackianae Olomucensis. Facultas Rerum Naturalium. Mathematica
ISSN: 0231-9721
Volume: 51
Issue: 1
Year: 2012
Pages: 89-100
Summary lang: English
.
Category: math
.
Summary: In this paper we introduce a new sequence space $ BV_{\sigma }(\mathcal {M},u,p,r, \Vert \cdot , \ldots , \cdot \Vert )$ defined by a sequence of Orlicz functions $\mathcal {M} = (M_k)$ and study some topological properties of this sequence space. (English)
Keyword: paranorm space
Keyword: invariant mean
Keyword: orlicz function
Keyword: Musielak–orlicz function
Keyword: $n$-normed space
Keyword: solid
MSC: 40A05
MSC: 40D05
MSC: 46A45
idZBL: Zbl 06204923
idMR: MR3060011
.
Date available: 2012-06-25T08:25:56Z
Last updated: 2014-03-12
Stable URL: http://hdl.handle.net/10338.dmlcz/142876
.
Reference: [1] Ahmad, Z. U., Mursaleen, M.: An application of Banach limits. Proc. Amer. Math. Soc., 103 (1983), 244–246. MR 0938676, 10.1090/S0002-9939-1988-0938676-7
Reference: [2] Gähler S.: Linear 2-normietre Rume. Math. Nachr. 28 (1965), 1–43. 10.1002/mana.19640280102
Reference: [3] Gunawan H.: On $n$-inner product, $n$-norms, and the Cauchy–Schwartz Inequality. Scientiae Mathematicae Japonicae 5 (2001), 47–543. MR 1885776
Reference: [4] Gunawan H.: The space of $p$-summable sequence and its natural $n$-norm. Bull. Aust. Math. Soc. 64 (2001), 137–147. MR 1848086, 10.1017/S0004972700019754
Reference: [5] Gunawan H., Mashadi M.: On $n$-normed spaces. Int. J. Math. Math. Sci. 27 (2001), 631–639. Zbl 1006.46006, MR 1873126, 10.1155/S0161171201010675
Reference: [6] Khan, V. A.: On a new sequence space defined by Orlicz functions. Commun. Fac. Sci. Univ. Ank. $A_1$ 57 (2008), 25–33. Zbl 1177.46006, MR 2528885
Reference: [7] Lindenstrauss, J., Tzafriri, L.: On Orlicz seequence spaces. Israel J. Math. 10 (1971), 379–390. MR 0313780, 10.1007/BF02771656
Reference: [8] Lorentz G. G.: A Contribution to the theory of divergent series. Acta Math. 80 (1948), 167–190. MR 0027868, 10.1007/BF02393648
Reference: [9] Maddox, I. J.: Some properties of paranormed sequence spaces. J. London Math. Soc. 1, (1989), 316–322. MR 0247330
Reference: [10] Maligranda, L.: Orlicz spaces & interpolation. Seminars in mathematics 5 Polish Academy of Sciences, 1989. Zbl 0874.46022, MR 2264389
Reference: [11] Misiak A.: n-inner product spaces. Math. Nachr. 140, (1989), 299–319. Zbl 0708.46025, MR 1015402, 10.1002/mana.19891400121
Reference: [12] Murasaleen, M.: Matrix transformation between some new sequence spaces. Houston J. Math. 9 (1983), 505–509.
Reference: [13] Murasaleen, M.: On some new invariant matrix methods of summability. Quart. J. Math. Oxford 34, (1983), 77–86. MR 0688425, 10.1093/qmath/34.1.77
Reference: [14] Musielak, J.: Orlicz Spaces. Lectures Notes in Math. 1034 Springer, 1983. Zbl 0557.46020
Reference: [15] Raj K., Sharma, A. K., Sharma S. K.: A Sequence space defined by Musielak-Orlicz functions. Int. J. Pure Appl. Math. 67 (2011), 475–484. MR 2814723
Reference: [16] Raj K., Sharma, S. K., Sharma A. K.: Some difference sequence spaces in $n$-normed spaces defined by Musielak–Orlicz function. Armenian J. Math. 3 (2010), 127–141. MR 2792497
Reference: [17] Raj K., Sharma, S. K.: Some sequence spaces in 2-normed spaces defined by Musielak-Orlicz functions. Acta Univ. Sapientiae Math. 3 (2011), 97–109. MR 2823221
Reference: [18] Rao, M. M, Ren, Z. D: Theory of Orlicz Spaces. Marcel Dekker Inc. New york, Basel, Hongkong, 1991. Zbl 0724.46032, MR 1113700
Reference: [19] Schafer, P.: Infinite matrices and invariant means. Proc. Amer. Math. Soc. 36 (1972), 104–110. MR 0306763, 10.1090/S0002-9939-1972-0306763-0
Reference: [20] Wilansky, A.: Summability through Functional Analysis. North-Holland Math. Stud., 1984. Zbl 0531.40008, MR 0738632
.

Files

Files Size Format View
ActaOlom_51-2012-1_7.pdf 257.4Kb application/pdf View/Open
Back to standard record
Partner of
EuDML logo