Previous |  Up |  Next

Article

Title: Harmonic and Minimal Unit Vector Fields on the Symmetric Spaces $G_2$ and $G_2/SO(4)$ (English)
Author: Verhóczki, László
Language: English
Journal: Acta Universitatis Palackianae Olomucensis. Facultas Rerum Naturalium. Mathematica
ISSN: 0231-9721
Volume: 51
Issue: 1
Year: 2012
Pages: 101-109
Summary lang: English
.
Category: math
.
Summary: The exceptional compact symmetric spaces $G_2$ and $G_2/SO(4)$ admit cohomogeneity one isometric actions with two totally geodesic singular orbits. These singular orbits are not reflective submanifolds of the ambient spaces. We prove that the radial unit vector fields associated to these isometric actions are harmonic and minimal. (English)
Keyword: harmonic unit vector field
Keyword: minimal unit vector field
Keyword: Lie group
Keyword: Riemannian symmetric space
Keyword: isometric action
MSC: 53C35
MSC: 53C40
MSC: 53C42
MSC: 53C43
MSC: 57S15
idZBL: Zbl 06204924
idMR: MR3060012
.
Date available: 2012-06-25T08:26:38Z
Last updated: 2014-03-12
Stable URL: http://hdl.handle.net/10338.dmlcz/142877
.
Reference: [1] Berndt, J., Vanhecke, L., Verhóczki, L.: Harmonic and minimal unit vector fields on Riemannian symmetric spaces. Illinois J. Math. 47 (2003), 1273–1286. Zbl 1045.53036, MR 2037003
Reference: [2] Boeckx, E., Vanhecke, L.: Harmonic and minimal radial vector fields. Acta Math. Hungar. 90 (2001), 317–331. Zbl 1012.53040, MR 1910716, 10.1023/A:1010687231629
Reference: [3] Boeckx, E., Vanhecke, L.: Isoparametric functions and harmonic and minimal unit vector fields. In: Fernández, M., Wolf, J. A. (eds.) Global differential geometry: The mathematical legacy of Alfred Gray Contemp. Math., 288, Amer. Math. Soc., Providence, RI, 2001, 20–31. Zbl 1004.53046, MR 1870997
Reference: [4] Gil-Medrano, O., Llinares-Fuster, E.: Minimal unit vector fields. Tôhoku Math. J. 54 (2002), 71–84. Zbl 1006.53053, MR 1878928, 10.2748/tmj/1113247180
Reference: [5] Helgason, S.: Differential geometry, Lie groups, and symmetric spaces. Academic Press, New York, 1978. Zbl 0451.53038, MR 0514561
Reference: [6] Kollross, A.: A classification of hyperpolar and cohomogeneity one actions. Trans. Amer. Math. Soc. 354 (2002), 571–612. Zbl 1042.53034, MR 1862559, 10.1090/S0002-9947-01-02803-3
Reference: [7] Leung, D. S. P.: On the classification of reflective submanifolds of Riemannian symmetric spaces. Indiana Univ. Math. J. 24 (1974), 327–339. Zbl 0296.53039, MR 0367873, 10.1512/iumj.1975.24.24029
Reference: [8] Postnikov, M.: Lectures in Geometry. Semester V. Lie groups and Lie algebras. Mir Publishers, Moscow, 1986. MR 0905471
Reference: [9] Verhóczki, L.: The exceptional compact symmetric spaces $G_2$ and $G_2/SO(4)$ as tubes. Monatsh. Math. 141 (2004), 323–335. Zbl 1058.53041, MR 2053657, 10.1007/s00605-002-0036-8
Reference: [10] Wiegmink, G.: Total bending of vector fields on Riemannian manifolds. Math. Ann. 303 (1995), 325–344. Zbl 0834.53034, MR 1348803, 10.1007/BF01460993
.

Files

Files Size Format View
ActaOlom_51-2012-1_8.pdf 256.6Kb application/pdf View/Open
Back to standard record
Partner of
EuDML logo