Previous |  Up |  Next

Article

Title: $G$-nilpotent units of commutative group rings (English)
Author: Danchev, Peter
Language: English
Journal: Commentationes Mathematicae Universitatis Carolinae
ISSN: 0010-2628 (print)
ISSN: 1213-7243 (online)
Volume: 53
Issue: 2
Year: 2012
Pages: 179-187
Summary lang: English
.
Category: math
.
Summary: Suppose $R$ is a commutative unital ring and $G$ is an abelian group. We give a general criterion only in terms of $R$ and $G$ when all normalized units in the commutative group ring $RG$ are $G$-nilpotent. This extends recent results published in [Extracta Math., 2008--2009] and [Ann. Sci. Math. Québec, 2009]. (English)
Keyword: group rings
Keyword: normalized units
Keyword: nilpotents
Keyword: idempotents
Keyword: decompositions
Keyword: abelian groups
MSC: 16S34
MSC: 16U60
MSC: 20K10
MSC: 20K20
MSC: 20K21
idZBL: Zbl 1255.16042
idMR: MR3017253
.
Date available: 2012-08-08T08:56:15Z
Last updated: 2014-07-07
Stable URL: http://hdl.handle.net/10338.dmlcz/142883
.
Reference: [1] Bourbaki N.: Commutative Algebra, Chapters 1–7.Elements of Mathematics (Berlin), Springer, Berlin, 1989. Zbl 0902.13001, MR 0979760
Reference: [2] Danchev P.: On a decomposition of normalized units in abelian group algebras.An. Univ. Bucuresti Mat. 57 (2008), no. 2, 133–138. Zbl 1165.16017, MR 2553986
Reference: [3] Danchev P.: Trivial units in commutative group algebras.Extracta Math. 23 (2008), no. 1, 49–60. Zbl 1163.16019, MR 2449995
Reference: [4] Danchev P.: Trivial units in abelian group algebras.Extracta Math. 24 (2009), no. 1, 47–53. Zbl 1184.16040, MR 2596826
Reference: [5] Danchev P.: $G$-unipotent units in commutative group rings.Ann. Sci. Math. Québec 33 (2009), no. 1, 39–44. Zbl 1207.16039, MR 2729818
Reference: [6] Karpilovsky G.: On units in commutative group rings.Arch. Math. (Basel) 38 (1982), 420–422. Zbl 0465.16005, MR 0666913, 10.1007/BF01304809
Reference: [7] Karpilovsky G.: On finite generation of unit groups of commutative group rings.Arch. Math. (Basel) 40 (1983), 503–508. Zbl 0498.16004, MR 0710015, 10.1007/BF01192817
Reference: [8] Karpilovsky G.: Unit Groups of Group Rings.Longman Scientific and Technical, Harlow, 1989. Zbl 0687.16010, MR 1042757
Reference: [9] Karpilovsky G.: Units of commutative group algebras.Exposition. Math. 8 (1990), 247–287. Zbl 0703.16017, MR 1062769
Reference: [10] Passman D.: The Algebraic Structure of Group Rings.Wiley-Interscience, New York, 1977. Zbl 0654.16001, MR 0470211
Reference: [11] Polcino Milies C., Sehgal S.: An Introduction to Group Rings.Algebras and Applications, 1, Kluwer, Dordrecht, 2002. Zbl 0997.20003, MR 1896125, 10.1007/978-94-010-0405-3
Reference: [12] Sehgal S.: Topics in Group Rings.Marcel Dekker, New York, 1978. Zbl 0411.16004, MR 0508515
Reference: [13] May W.: Group algebras over finitely generated rings.J. Algebra 39 (1976), 483–511. Zbl 0328.16012, MR 0399232, 10.1016/0021-8693(76)90049-1
.

Files

Files Size Format View
CommentatMathUnivCarolRetro_53-2012-2_2.pdf 469.5Kb application/pdf View/Open
Back to standard record
Partner of
EuDML logo