Previous |  Up |  Next

Article

Title: Distinct equilateral triangle dissections of convex regions (English)
Author: Donovan, Diane M.
Author: Lefevre, James G.
Author: McCourt, Thomas A.
Author: Cavenagh, Nicholas J.
Language: English
Journal: Commentationes Mathematicae Universitatis Carolinae
ISSN: 0010-2628 (print)
ISSN: 1213-7243 (online)
Volume: 53
Issue: 2
Year: 2012
Pages: 189-210
Summary lang: English
.
Category: math
.
Summary: We define a proper triangulation to be a dissection of an integer sided equilateral triangle into smaller, integer sided equilateral triangles such that no point is the vertex of more than three of the smaller triangles. In this paper we establish necessary and sufficient conditions for a proper triangulation of a convex region to exist. Moreover we establish precisely when at least two such equilateral triangle dissections exist. We also provide necessary and sufficient conditions for some convex regions with up to four sides to have either one, or at least two, proper triangulations when an internal triangle is specified. (English)
Keyword: equilateral triangle dissection
Keyword: latin trade
MSC: 05B45
idZBL: Zbl 1265.05091
idMR: MR3017254
.
Date available: 2012-08-08T08:57:25Z
Last updated: 2014-07-07
Stable URL: http://hdl.handle.net/10338.dmlcz/142884
.
Reference: [1] Cavenagh N.J.: Latin trades and critical sets in latin squares.PhD Thesis, University of Queensland, Australia, 2003.
Reference: [2] Cavenagh N.J., Donovan D.M., Khodkar A., Lefevre J.G., McCourt T.A.: Identifying flaws in the security of critical sets in latin squares via triangulations.Australas. J. Combin. 52 (2012), 243–268. MR 2917933
Reference: [3] Drápal A.: On a planar construction of quasigroups.Czechoslovak Math. J. 41 (1991), no. 3, 538–548. MR 1117806
Reference: [4] Drápal A.: Hamming distances of groups and quasi-groups.Discrete Math. 235 (2001), no. 1–3, 189–197. MR 1829848, 10.1016/S0012-365X(00)00272-7
Reference: [5] Drápal A., Hämäläinen C.: An enumeration of equilateral triangle dissections.Discrete Applied Math. 158 (2010), no. 14, 1479–1495. Zbl 1205.52014, MR 2659163, 10.1016/j.dam.2010.04.012
Reference: [6] Drápal A., Hämäläinen C., Kala V.: Latin bitrades, dissections of equilateral triangles and abelian groups.J. Combin. Des. 18 (2010), no. 1, 1–24. MR 2584401
Reference: [7] Keedwell A.D.: Critical sets in latin squares and related matters: an update.Util. Math. 65 (2004), 97–131. Zbl 1053.05019, MR 2048415
Reference: [8] Laczkovich M.: Tilings of polygons with similar triangles.Combinatorica 10 (1990), no. 3, 281–306. Zbl 0927.52028, MR 1092545, 10.1007/BF02122782
Reference: [9] Laczkovich M.: Tilings of triangles.Discrete Math. 140 (1995), no. 1–3, 79–94. Zbl 0822.05021, MR 1333711, 10.1016/0012-365X(93)E0176-5
Reference: [10] Laczkovich M.: Tilings of polygons with similar triangles, II.Discrete Comput. Geom. 19 (1998), no. 3, Special Issue, 411425, dedicated to the memory of Paul Erdös. Zbl 0927.52028, MR 1608883
Reference: [11] McCourt T.A.: On defining sets in latin squares and two intersection problems, one for latin squares and one for Steiner triple systems.PhD Thesis, University of Queensland, Australia, 2010. Zbl 1195.05014, MR 2685159
Reference: [12] Tutte W.T.: The dissection of equilateral triangles into equilateral triangles.Proc. Cambridge Philos. Soc. 44 (1948), 463–482. Zbl 0030.40903, MR 0027521
.

Files

Files Size Format View
CommentatMathUnivCarolRetro_53-2012-2_3.pdf 593.9Kb application/pdf View/Open
Back to standard record
Partner of
EuDML logo