Previous |  Up |  Next

Article

Title: r-Realcompact spaces (English)
Author: Bhattacharya, D.
Author: Dey, Lipika
Language: English
Journal: Commentationes Mathematicae Universitatis Carolinae
ISSN: 0010-2628 (print)
ISSN: 1213-7243 (online)
Volume: 53
Issue: 2
Year: 2012
Pages: 253-267
Summary lang: English
.
Category: math
.
Summary: A new generalization of realcompactness based on ultrafilters of regular $F_{\sigma}$-subsets is introduced. Its relationship with realcompactness, almost realcompactness, almost* realcompactness, c-realcompactness is examined. Some of the properties of the newly introduced space is studied as well. (English)
Keyword: regular $F_{\sigma}$-subsets
Keyword: almost realcompactness
Keyword: almost* realcompactness
Keyword: r-weak cb
Keyword: regular Oz
Keyword: regular countably paracompact
MSC: 54D60
idZBL: Zbl 1265.54111
idMR: MR3017258
.
Date available: 2012-08-08T09:02:15Z
Last updated: 2014-07-07
Stable URL: http://hdl.handle.net/10338.dmlcz/142888
.
Reference: [1] Bhattacharya D., Bhaumik R.N.: Regular $G_{\delta}$-subsets and realcompact spaces.Bull. Calcutta Math. Soc. 87 (1995), 39–44. MR 1352064
Reference: [2] Bhattacharya D., Bhaumik R.N.: Regular $G$-delta embeddings.Far East J. Math. Sci. (1997), Special Volume, Part II, 167–179. MR 1605437
Reference: [3] Blair R.L.: Spaces in which special sets are z-embedded.Canad. J. Math. 28 (1976), 673–690. Zbl 0359.54009, MR 0420542, 10.4153/CJM-1976-068-9
Reference: [4] Dykes N.: Generalizations of realcompact spaces.Pacific J. Math. 33 (1970), 571–581. Zbl 0197.19201, MR 0276928, 10.2140/pjm.1970.33.571
Reference: [5] Frolík Z.: A generalization of realcompact spaces.Czechoslovak Math. J. 13 (1963), 127–138. Zbl 0112.37603, MR 0155289
Reference: [6] Frolík Z.: Prime filters with CIP.Comment. Math. Univ. Carolin. 13 (1972), no. 3, 553–575. Zbl 0251.54001, MR 0315648
Reference: [7] Gillman L., Jerison M.: Rings of Continuous Functions.University Series in Higher Math. Van Nostrand, Princeton, New Jersey, 1960. Zbl 0327.46040, MR 0116199
Reference: [8] Hardy K., Woods R.G.: On c-realcompact spaces and locally bounded normal functions.Pacific J. Math. 43 (1972), 647–656. Zbl 0228.54019, MR 0365497, 10.2140/pjm.1972.43.647
Reference: [9] Hewitt E.: Rings of real valued continuous functions.Trans. Amer. Math. Soc. 64 (1948), 54–99. Zbl 0432.03030, MR 0026239, 10.1090/S0002-9947-1948-0026239-9
Reference: [10] Horne J.G.: Countable paracompactness and cb spaces.Notices Amer. Math. Soc. 6 (1959), 629–636.
Reference: [11] Mack J.E.: Countable paracompactness and weak normality properties.Trans. Amer. Math. Soc. 148 (1970), 265–272. Zbl 0209.26904, MR 0259856, 10.1090/S0002-9947-1970-0259856-3
Reference: [12] Mack J.E., Johnson D.G.: The Dedekind completion of $C(X)$.Pacific J. Math. 20 (1967), 231–243. MR 0211268, 10.2140/pjm.1967.20.231
Reference: [13] Mysior A.: A union of realcompact spaces.Bull. Acad. Polon. Sci. Sér. Sci. Math. 29 (1981), no. 3–4, 169–172. Zbl 0469.54011, MR 0638760
Reference: [14] Porter J., Woods R.G.: Extensions and Absolutes of Hausdorff Spaces.Springer, New York, Heidelberg, Berlin, 1938. Zbl 0652.54016, MR 0918341
Reference: [15] Schommer J., Swardson M.A.: Almost* realcompactness.Comment. Math. Univ. Carolin. 42 (2001), no. 2, 385–394. MR 1832157
Reference: [16] van der Slot J.: Some properties related to compactness.Mathematical Centre Tracts, 19, Mathematisch Centrum, Amsterdam, 1968. Zbl 0182.56204, MR 0247607
.

Files

Files Size Format View
CommentatMathUnivCarolRetro_53-2012-2_7.pdf 544.1Kb application/pdf View/Open
Back to standard record
Partner of
EuDML logo