Previous |  Up |  Next

Article

Title: Duality properties and Riesz representation theorem in Besicovitch-Musielak-Orlicz space of almost periodic functions (English)
Author: Daoui, A.
Author: Morsli, M.
Author: Smaali, M.
Language: English
Journal: Commentationes Mathematicae Universitatis Carolinae
ISSN: 0010-2628 (print)
ISSN: 1213-7243 (online)
Volume: 53
Issue: 2
Year: 2012
Pages: 237-251
Summary lang: English
.
Category: math
.
Summary: This paper is an extension of the work done in [Morsli M., Bedouhene F., Boulahia F., Duality properties and Riesz representation theorem in the Besicovitch-Orlicz space of almost periodic functions, Comment. Math. Univ. Carolin. 43 (2002), no. 1, 103--117] to the Besicovitch-Musielak-Orlicz space of almost periodic functions. Necessary and sufficient conditions for the reflexivity of this space are given. A Riesz type ``duality representation theorem'' is also stated. (English)
Keyword: Orlicz norm
Keyword: Amemiya norm
Keyword: conjugate function
Keyword: Besicovitch-Musielak-Orlicz spaces
Keyword: almost periodic functions
Keyword: reflexivity
Keyword: Riesz theorem
MSC: 42A75
MSC: 46B20
idZBL: Zbl 1265.46050
idMR: MR3017257
.
Date available: 2012-08-08T09:00:57Z
Last updated: 2014-07-07
Stable URL: http://hdl.handle.net/10338.dmlcz/142887
.
Reference: [1] Besicovitch A.S.: Almost Periodic Functions.Cambridge Univ. Press, Cambridge, 1932. Zbl 0065.07102
Reference: [2] Corduneanu C., Gheorghiu N., Barbu V.: Almost Periodic Functions.Publishing Company, Chelsea, 1989. Zbl 0672.42008, MR 0481915
Reference: [3] Fan X.L.: Amemiya norm equals Orlicz norm in Musielak-Orlicz spaces.Acta Math. Sin. 23 (2007), no. 2, 281–288. Zbl 1129.46020, MR 2286921, 10.1007/s10114-005-0865-1
Reference: [4] Hillmann T.R.: Besicovitc-Orlicz spaces of almost periodic functions.Real and Stochastic Analysis, Wiley, New York, 1986, pp. 119–167. MR 0856581
Reference: [5] Hudzik H.: Musielak-Orlicz spaces isomorphic to strictly convex spaces.Bull. Acad. Polon. Sci. Sér. Sci. Math. 29 (1981), no. 9–10, 465–470. Zbl 0484.46031, MR 0646335
Reference: [6] Hudzik H., Kaminska A.: On uniformly convexifiable and B-convex Musielak-Orlicz spaces.Comment. Math. Prace Mat. 25 (1985), 59–75. Zbl 0588.46022, MR 0795121
Reference: [7] Hudzik H., Maligranda L.: Amemiya norm equals Orlicz norm in general.Indag. Math. 11 (2000), no. 4, 573–585. Zbl 1010.46031, MR 1909821, 10.1016/S0019-3577(00)80026-9
Reference: [8] Morsli M., Bedouhene F., Boulahia F.: Duality properties and Riesz representation theorem in the Besicovitch-Orlicz space of almost periodic functions.Comment. Math. Univ. Carolin. 43 (2002), no. 1, 103–117. Zbl 1090.46010, MR 1903310
Reference: [9] Morsli M., Smaali M.: Characterization of the uniform convexity of the Besicovitch-Musielak-Orlicz space of almost periodic functions.Comment. Math. Prace Mat. 46 (2006), no. 2, 215–231. MR 2287686
Reference: [10] Morsli M., Smaali M.: Characterization of the strict convexity of the Besicovitch-Musielak-Orlicz space of almost periodic functions.Comment. Math. Univ. Carolin. 48 (2007), no. 3, 443–458. Zbl 1199.46045, MR 2374126
Reference: [11] Musielak J.: Orlicz Spaces and Modular Spaces.Lecture Notes in Mathematics, 1034, Springer, Berlin, 1983. Zbl 0557.46020, MR 0724434
.

Files

Files Size Format View
CommentatMathUnivCarolRetro_53-2012-2_6.pdf 553.6Kb application/pdf View/Open
Back to standard record
Partner of
EuDML logo