Previous |  Up |  Next

Article

Title: On the growth of solutions of some higher order linear differential equations (English)
Author: El Farissi, Abdallah
Author: Belaidi, Benharrat
Language: English
Journal: Applications of Mathematics
ISSN: 0862-7940 (print)
ISSN: 1572-9109 (online)
Volume: 57
Issue: 4
Year: 2012
Pages: 377-390
Summary lang: English
.
Category: math
.
Summary: In this paper we discuss the growth of solutions of the higher order nonhomogeneous linear differential equation \begin{align} &f^{(k)}+A_{k-1}f^{(k-1)}+\dots +A_{2}f''+(D_{1}(z) +A_{1}(z) {\rm e}^{az})f'\\ &\hfill +( D_{0}(z)+A_{0}(z) {\rm e}^{bz}) f=F\quad (k\ge 2), \end{align} where $a$, $b$ are complex constants that satisfy $ab(a-b) \neq 0 $ and $A_{j}(z)$ $(j=0,1,\dots ,k-1)$, $D_{j}(z) $ $(j=0,1)$, $F(z) $ are entire functions with $\max \{\rho (A_{j}) \ (j=0,1,\dots ,k-1), \ \rho (D_{j})$ $(j=0,1)\}<1$. We also investigate the relationship between small functions and the solutions of the above equation. (English)
Keyword: linear differential equations
Keyword: entire solutions
Keyword: order of growth
Keyword: exponent of convergence of zeros
Keyword: exponent of convergence of distinct zeros
MSC: 30D35
MSC: 34M03
MSC: 34M10
idZBL: Zbl 1265.34327
idMR: MR2984609
DOI: 10.1007/s10492-012-0022-y
.
Date available: 2012-08-19T21:46:00Z
Last updated: 2020-07-02
Stable URL: http://hdl.handle.net/10338.dmlcz/142905
.
Reference: [1] Amemiya, I., Ozawa, M.: Non-existence of finite order solutions of $w''+ e^{-z}w' +Q(z) w =0$.Hokkaido Math. J. 10 (1981), 1-17. MR 0662294
Reference: [2] Belaïdi, B.: Growth and oscillation theory of solutions of some linear differential equations.Mat. Vesn. 60 (2008), 233-246. Zbl 1274.30112, MR 2465805
Reference: [3] Belaïdi, B., Farissi, A. El: Differential polynomials generated by some complex linear differential equations with meromorphic coefficients.Glas. Mat., Ser. III 43 (2008), 363-373. Zbl 1166.34054, MR 2460705, 10.3336/gm.43.2.09
Reference: [4] Chen, Z. X.: Zeros of meromorphic solutions of higher order linear differential equations.Analysis 14 (1994), 425-438. Zbl 0815.34003, MR 1310623, 10.1524/anly.1994.14.4.425
Reference: [5] Chen, Z. X.: The growth of solutions of $f''+ e^{-z}f'+Q(z) f=0$ where the order $(Q) =1$.Sci. China, Ser. A 45 (2002), 290-300. MR 1903625
Reference: [6] Chen, Z. X., Shon, K. H.: On the growth of solutions of a class of higher order differential equations.Acta Math. Sci., Ser. B, Engl. Ed. 24 (2004), 52-60. Zbl 1056.30029, MR 2036062, 10.1016/S0252-9602(17)30359-4
Reference: [7] Frei, M.: Über die Lösungen linearer Differentialgleichungen mit ganzen Funktionen als Koeffizienten.Comment. Math. Helv. 35 (1961), 201-222. Zbl 0115.06903, MR 0126008, 10.1007/BF02567016
Reference: [8] Frei, M.: Über die subnormalen Lösungen der Differentialgleichung $w''+ e^{-z}w'+konst. w=0$.Comment. Math. Helv. 36 (1961), 1-8. Zbl 0115.06904, MR 0151657, 10.1007/BF02566887
Reference: [9] Gundersen, G. G.: On the question of whether $f''+ e^{-z}f'+B(z) f=0$ can admit a solution $f\not\equiv 0$ of finite order.Proc. R. Soc. Edinb., Sect. A 102 (1986), 9-17. MR 0837157, 10.1017/S0308210500014451
Reference: [10] Gundersen, G. G.: Estimates for the logarithmic derivative of a meromorphic function, plus similar estimates.J. Lond. Math. Soc., II. Ser. 37 (1988), 88-104. Zbl 0638.30030, MR 0921748, 10.1112/jlms/s2-37.121.88
Reference: [11] Hayman, W. K.: Meromorphic functions.Clarendon Press Oxford (1964). Zbl 0115.06203, MR 0164038
Reference: [12] Jank, G., Volkmann, L.: Einführung in die Theorie der ganzen und meromorphen Funktionen mit Anwendungen auf Differentialgleichungen.Birkhäuser Basel (1985). Zbl 0682.30001, MR 0820202
Reference: [13] Langley, J. K.: On complex oscillation and a problem of Ozawa.Kodai Math. J. 9 (1986), 430-439. Zbl 0609.34041, MR 0856690, 10.2996/kmj/1138037272
Reference: [14] Markushevich, A. I.: Theory of functions of a complex variable, Vol. II.Prentice-Hall Englewood Cliffs (1965). Zbl 0142.32602, MR 0181738
Reference: [15] Nevanlinna, R.: Eindeutige analytische Funktionen, Zweite Auflage. Reprint. Die Grundlehren der mathematischen Wissenschaften, Band 46.Springer Berlin-Heidelberg-New York (1974), German. MR 0344426
Reference: [16] Ozawa, M.: On a solution of $w''+ e^{-z}w'+(az+b) w=0$.Kodai Math. J. 3 (1980), 295-309. MR 0588459, 10.2996/kmj/1138036197
Reference: [17] Wang, J., Laine, I.: Growth of solutions of second order linear differential equations.J. Math. Anal. Appl. 342 (2008), 39-51. Zbl 1151.34069, MR 2440778, 10.1016/j.jmaa.2007.11.022
Reference: [18] Xu, H. Y., Cao, T. B.: Oscillation of solutions of some higher order linear differential equations.Electron. J. Qual. Theory Differ. Equ., paper No. 63, 18 pages (2009). Zbl 1198.34189, MR 2558638
.

Files

Files Size Format View
AplMat_57-2012-4_4.pdf 279.6Kb application/pdf View/Open
Back to standard record
Partner of
EuDML logo