Previous |  Up |  Next

Article

Title: Variance components and an additional experiment (English)
Author: Kubáček, Lubomír
Language: English
Journal: Applications of Mathematics
ISSN: 0862-7940 (print)
ISSN: 1572-9109 (online)
Volume: 57
Issue: 4
Year: 2012
Pages: 391-405
Summary lang: English
.
Category: math
.
Summary: Estimators of parameters of an investigated object can be considered after some time as insufficiently precise. Therefore, an additional measurement must be realized. A model of a measurement, taking into account both the original results and the new ones, has a litle more complicated covariance matrix, since the variance components occur in it. How to deal with them is the aim of the paper. (English)
Keyword: additional experiment
Keyword: variance components
Keyword: insensitivity region
MSC: 62F10
MSC: 62H12
MSC: 62J05
idZBL: Zbl 1264.62014
idMR: MR2984610
DOI: 10.1007/s10492-012-0023-x
.
Date available: 2012-08-19T21:47:50Z
Last updated: 2020-07-02
Stable URL: http://hdl.handle.net/10338.dmlcz/142906
.
Reference: [1] Fišerová, E., Kubáček, L., Kunderová, P.: Linear Statistical Models; Regularity and Singularities.Academia Praha (2007).
Reference: [2] Chatterjee, S., Hadi, A. S.: Sensitivity Analysis in Linear Regression.J. Wiley New York (1988). Zbl 0648.62066, MR 0939610
Reference: [3] Giles, D. E. A., Srivastava, V. K.: An unbiased eastimator of the covariance matrix of the mixed regression estimator.J. Am. Stat. Assoc. 86 (1991), 441-444 \MR 1137127. MR 1137127, 10.1080/01621459.1991.10475063
Reference: [4] Kubáček, L., Kubáčková, L., Volaufová, J.: Statistical Models with Linear Structures.Veda Bratislava (1995).
Reference: [5] Kubáček, L., Kubáčková, L.: Nonsensitiveness regions in universal models.Math. Slovaca 50 (2000), 219-240. MR 1763121
Reference: [6] Kubáček, L., Kubáčková, L.: Statistics and Metrology.Publishing House of Palacký University Olomouc (2000), Czech.
Reference: [7] Neter, J., Wassermann, W., Kutner, M. H.: Applied Linear Statistical Models, 3rd edition.Irwin Boston (1990).
Reference: [8] Rao, C. R.: Unified theory of least squares.Commun. Stat., Part A---Theory and Methods 1 (1973), 1-8. Zbl 0252.62037, MR 0315850, 10.1080/03610927208827002
Reference: [9] Rao, C. R., Mitra, S. K.: Generalized Inverse of Matrices and its Applications.John Wiley & Sons New York-London-Sydney-Toronto (1971). Zbl 0236.15005, MR 0338013
Reference: [10] Rao, C. R.: Linear Statistical Inference and Its Applications.John Wiley & Sons New York-London-Sydney (1973); Czech translation: Academia, Praha, 1978. Zbl 0256.62002, MR 0221616
Reference: [11] Rao, C. R., Kleffe, J.: Estimation of Variance Components and Applications.North-Holland Amsterdam-New York-Oxford-Tokyo (1988). Zbl 0645.62073, MR 0933559
Reference: [12] Rao, C. R., Toutenburg, H.: Linear Models. Least Squares and Alternatives, 2nd ed.Springer New York (1999). MR 1707290
Reference: [13] Seber, G. A. F., Lee, A. J.: Linear Regression Analysis, 2nd ed.Wiley New York (2003) \MR 0958247. Zbl 1029.62059, MR 1958247
Reference: [14] Weisberg, S.: Applied Linear Regression, 3rd revised ed.John Wiley & Sons New York (1980). MR 0591462
.

Files

Files Size Format View
AplMat_57-2012-4_5.pdf 267.5Kb application/pdf View/Open
Back to standard record
Partner of
EuDML logo