Previous |  Up |  Next

Article

Title: Periodic solutions for second order Hamiltonian systems (English)
Author: Zhang, Qiongfen
Author: Tang, X. H.
Language: English
Journal: Applications of Mathematics
ISSN: 0862-7940 (print)
ISSN: 1572-9109 (online)
Volume: 57
Issue: 4
Year: 2012
Pages: 407-425
Summary lang: English
.
Category: math
.
Summary: By using the least action principle and minimax methods in critical point theory, some existence theorems for periodic solutions of second order Hamiltonian systems are obtained. (English)
Keyword: periodic solutions
Keyword: minimax methods
Keyword: second order Hamiltonian systems
MSC: 34B15
MSC: 34C25
MSC: 37J45
MSC: 58E05
MSC: 58E30
MSC: 70H05
idZBL: Zbl 1265.34154
idMR: MR2984611
DOI: 10.1007/s10492-012-0024-9
.
Date available: 2012-08-19T21:50:12Z
Last updated: 2020-07-02
Stable URL: http://hdl.handle.net/10338.dmlcz/142907
.
Reference: [1] Berger, M. S., Schechter, M.: On the solvability of semilinear gradient operator equations.Adv. Math. 25 (1977), 97-132. Zbl 0354.47025, MR 0500336, 10.1016/0001-8708(77)90001-9
Reference: [2] Mawhin, J.: Semi-coercive monotone variational problems.Bull. Cl. Sci., V. Sér., Acad. R. Belg. 73 (1987), 118-130. Zbl 0647.49007, MR 0938142
Reference: [3] Mawhin, J., Willem, M.: Critical Point Theory and Hamiltonian Systems.Springer New York (1989). Zbl 0676.58017, MR 0982267
Reference: [4] Mawhin, J., Willem, M.: Critical points of convex perturbations of some indefinite quadratic forms and semilinear boundary value problems at resonance.Ann. Inst. Henri. Poincaré, Anal. Non Linéaire 3 (1986), 431-453. Zbl 0678.35091, MR 0870864, 10.1016/S0294-1449(16)30376-6
Reference: [5] Rabinowitz, P. H.: On subharmonic solutions of Hamiltonian systems.Commun. Pure Appl. Math. 33 (1980), 609-633. Zbl 0425.34024, MR 0586414, 10.1002/cpa.3160330504
Reference: [6] Rabinowitz, P. H.: Minimax methods in critical point theory with applications to differential equations.In: CBMS Reg. Conf. Ser. Math., Vol. 65 Am. Math. Soc. Providence (1986). Zbl 0609.58002, MR 0845785
Reference: [7] Tang, C. L.: Periodic solutions of non-autonomous second order systems with $\gamma$quasisub-additive potential.J. Math. Anal. Appl. 189 (1995), 671-675. MR 1312546, 10.1006/jmaa.1995.1044
Reference: [8] Tang, C. L.: Periodic solutions of nonautonomous second order systems.J. Math. Anal. Appl. 202 (1996), 465-469. 10.1006/jmaa.1996.0327
Reference: [9] Tang, C. L.: Periodic solutions of nonautonomous second order systems with sublinear nonlinearity.Proc. Am. Math. Soc. 126 (1998), 3263-3270. MR 1476396, 10.1090/S0002-9939-98-04706-6
Reference: [10] Tang, C. L., Wu, X. P.: Periodic solutions for second order systems with not uniformly coercive potential.J. Math. Anal. Appl. 259 (2001), 386-397. Zbl 0999.34039, MR 1842066, 10.1006/jmaa.2000.7401
Reference: [11] Willem, M.: Oscillations forcees de systémes hamiltoniens.In: Public. Semin. Analyse Non Linéaire Univ. Besancon (1981). Zbl 0482.70020
Reference: [12] Wu, X.: Saddle point characterization and multiplicity of periodic solutions of non-autonomous second order systems.Nonlinear Anal., Theory Methods Appl. 58 (2004), 899-907. Zbl 1058.34053, MR 2086063, 10.1016/j.na.2004.05.020
Reference: [13] Wu, X. P., Tang, C. L.: Periodic solutions of a class of nonautonomous second order systems.J. Math. Anal. Appl. 236 (1999), 227-235 \MR 1704579. MR 1704579, 10.1006/jmaa.1999.6408
Reference: [14] Zhao, F. K., Wu, X.: Periodic solutions for a class of non-autonomous second order systems.J. Math. Anal. Appl. 296 (2004), 422-434. MR 2075174, 10.1016/j.jmaa.2004.01.041
Reference: [15] Zhao, F. K., Wu, X.: Existence and multiplicity of periodic solutions for non-autonomous second-order systems with linear nonlinearity.Nonlinear Anal., Theory Methods Appl. 60 (2005), 325-335. MR 2101882
Reference: [16] Tang, X. H., Meng, Q.: Solutions of a second-order Hamiltonian system with periodic boundary conditions.Nonlinear Anal., Real World Appl. 11 (2010), 3722-3733. Zbl 1223.34024, MR 2683825
Reference: [17] Wang, Z. Y., Zhang, J. H.: Periodic solutions of a class of second order non-autonomous Hamiltonian systems.Nonlinear Anal., Theory Methods Appl. 72 (2010), 4480-4487. Zbl 1206.34060, MR 2639196, 10.1016/j.na.2010.02.023
.

Files

Files Size Format View
AplMat_57-2012-4_6.pdf 274.7Kb application/pdf View/Open
Back to standard record
Partner of
EuDML logo