Previous |  Up |  Next

Article

Title: Simple Monte Carlo integration with respect to Bernoulli convolutions (English)
Author: Gómez, David M.
Author: Dartnell, Pablo
Language: English
Journal: Applications of Mathematics
ISSN: 0862-7940 (print)
ISSN: 1572-9109 (online)
Volume: 57
Issue: 6
Year: 2012
Pages: 617-626
Summary lang: English
.
Category: math
.
Summary: We apply a Markov chain Monte Carlo method to approximate the integral of a continuous function with respect to the asymmetric Bernoulli convolution and, in particular, with respect to a binomial measure. This method---inspired by a cognitive model of memory decay---is extremely easy to implement, because it samples only Bernoulli random variables and combines them in a simple way so as to obtain a sequence of empirical measures converging almost surely to the Bernoulli convolution. We give explicit bounds for the bias and the standard deviation for this approximation, and present numerical simulations showing that it outperforms a general Monte Carlo method using the same number of Bernoulli random samples. (English)
Keyword: MCMC
Keyword: Bernoulli convolution
Keyword: binomial measure
Keyword: Monte Carlo integration
Keyword: empirical measures
MSC: 60G57
MSC: 65C05
MSC: 65D30
idZBL: Zbl 1274.65003
idMR: MR3010240
DOI: 10.1007/s10492-012-0037-4
.
Date available: 2012-11-10T20:44:04Z
Last updated: 2020-07-02
Stable URL: http://hdl.handle.net/10338.dmlcz/143006
.
Reference: [1] Andrieu, C., Freitas, N. De, Doucet, A., Jordan, M. I.: An introduction to MCMC for machine learning.Mach. Learn. 50 (2003), 5-43. Zbl 1033.68081, 10.1023/A:1020281327116
Reference: [2] Barnsley, M. F., Demko, S.: Iterated function systems and the global construction of fractals.Proc. R. Soc. Lond., Ser. A 399 (1985), 243-275. Zbl 0588.28002, MR 0799111, 10.1098/rspa.1985.0057
Reference: [3] Berkes, I., Csáki, E.: A universal result in almost sure central limit theory.Stoch. Proc. Appl. 94 (2001), 105-134. Zbl 1053.60022, MR 1835848, 10.1016/S0304-4149(01)00078-3
Reference: [4] Calabrò, F., Esposito, A. Corbo: An efficient and reliable quadrature algorithm for integration with respect to binomial measures.BIT 48 (2008), 473-491 \MR 2447981. MR 2447981, 10.1007/s10543-008-0168-x
Reference: [5] Dovgoshey, O., Martio, O., Ryazanov, V., Vuorinen, M.: The Cantor function.Expo. Math. 24 (2006), 1-37. Zbl 1098.26006, MR 2195181, 10.1016/j.exmath.2005.05.002
Reference: [6] Jessen, B., Wintner, A.: Distribution functions and the Riemann zeta function.Trans. Am. Math. Soc. 38 (1935), 48-88. Zbl 0014.15401, MR 1501802, 10.1090/S0002-9947-1935-1501802-5
Reference: [7] Kalos, M. H., Whitlock, P. A.: Monte Carlo Methods. Vol. I: Basics.Wiley New York (1986). MR 0864827
Reference: [8] Mandelbrot, B. B., Calvet, L., Fisher, A.: A multifractal model of asset returns.Cowles Foundation Discussion Papers: 1164 (1997), Retrieved from http://users.math.yale.edu/users/mandelbrot/web\_pdfs/Cowles1164.pdf (last access August 21, 2012).
Reference: [9] Peres, Y., Schlag, W., Solomyak, B.: Sixty years of Bernoulli convolutions. Fractal Geometry and Stochastics II. Proceedings of the 2nd conference Greifswald/Koserow, Germany, August 28--September 2, 1998. Eds. C. Bandt at al.Prog. Probab. 46 (2000), 39-65. MR 1785620
Reference: [10] Riedi, R. H.: Introduction to multifractals.Techn. Rep Rice Univ., October 26, 1999 Retrieved from http://rudolf.riedi.home.hefr.ch/Publ/PDF/intro.pdf (last access August 21, 2012).
Reference: [11] Strichartz, R. S., Taylor, A., Zhang, T.: Densities of self-similar measures on the line.Exp. Math. 4 (1995), 101-128. Zbl 0860.28005, MR 1377413, 10.1080/10586458.1995.10504313
Reference: [12] White, K. G.: Forgetting functions.Animal Learning & Behavior 29 (2001), 193-207. 10.3758/BF03192887
.

Files

Files Size Format View
AplMat_57-2012-6_5.pdf 279.0Kb application/pdf View/Open
Back to standard record
Partner of
EuDML logo