Previous |  Up |  Next

Article

Title: Approximations by the Cauchy-type integrals with piecewise linear densities (English)
Author: Drobek, Jaroslav
Language: English
Journal: Applications of Mathematics
ISSN: 0862-7940 (print)
ISSN: 1572-9109 (online)
Volume: 57
Issue: 6
Year: 2012
Pages: 627-640
Summary lang: English
.
Category: math
.
Summary: The paper is a contribution to the complex variable boundary element method, shortly CVBEM. It is focused on Jordan regions having piecewise regular boundaries without cusps. Dini continuous densities whose modulus of continuity $\omega (\cdot )$ satisfies $$ \limsup _{s\downarrow 0}\omega (s)\ln \frac {1}{s}=0 $$ are considered on these boundaries. Functions satisfying the Hölder condition of order $\alpha $, $0<\alpha \leq 1$, belong to them. The statement that any Cauchy-type integral with such a density can be uniformly approximated by a Cauchy-type integral whose density is a piecewise linear interpolant of the original one is proved under the assumption that the mesh of the interpolation nodes is sufficiently fine and uniform. This result ensures the existence of approximate CVBEM solutions of some planar boundary value problems, especially of the Dirichlet ones. (English)
Keyword: Cauchy-type integral
Keyword: Dini continuous density
Keyword: piecewise linear interpolation
Keyword: uniform convergence
Keyword: complex variable boundary element method
MSC: 30E10
MSC: 30E20
MSC: 65E05
MSC: 65N12
MSC: 65N38
idZBL: Zbl 1274.30146
idMR: MR3010241
DOI: 10.1007/s10492-012-0038-3
.
Date available: 2012-11-10T20:45:22Z
Last updated: 2020-07-02
Stable URL: http://hdl.handle.net/10338.dmlcz/143007
.
Reference: [1] Khubezhty, Sh. S.: Quadrature formulas for singular integrals with Cauchy kernel.Vladikavkaz. Mat. Zh. 10 (2008), 61-75 Russian \MR 2461693. MR 2461693
Reference: [2] II, T. V. Hromadka, Lai, C.: The Complex Variable Boundary Element Method in Engineering Analysis.Springler New York (1987).
Reference: [3] Whitley, R. J., II, T. V. Hromadka: Theoretical developments in the complex variable boundary element method.Eng. Anal. Bound. Elem. 30 (2006), 1020-1024. MR 1483319, 10.1016/j.enganabound.2006.08.002
Reference: [4] Whitley, R. J., II, T. V. Hromadka: The existence of approximate solutions for two-dimensional potential flow problems.Numer. Methods Partial Differ. Equations 12 (1996), 719-727. MR 1419772, 10.1002/(SICI)1098-2426(199611)12:6<719::AID-NUM5>3.0.CO;2-V
Reference: [5] Lu, J. K.: Boundary Value Problems for Analytic Functions.World Scientific Publishing Company Singapore (1993). Zbl 0818.30027, MR 1279172
Reference: [6] Privalov, I. I.: The boundary properties of analytical functions.CITTL Moscow (1950), Russian. MR 0047765
Reference: [7] Muskhelishvili, N. I.: Singular integral equations.Fizmatgiz Moscow (1962), Russian. Zbl 0103.07502, MR 0355494
.

Files

Files Size Format View
AplMat_57-2012-6_6.pdf 273.7Kb application/pdf View/Open
Back to standard record
Partner of
EuDML logo