Previous |  Up |  Next

Article

Title: Backward doubly stochastic differential equations with infinite time horizon (English)
Author: Zhu, Bo
Author: Han, Baoyan
Language: English
Journal: Applications of Mathematics
ISSN: 0862-7940 (print)
ISSN: 1572-9109 (online)
Volume: 57
Issue: 6
Year: 2012
Pages: 641-653
Summary lang: English
.
Category: math
.
Summary: We give a sufficient condition on the coefficients of a class of infinite horizon backward doubly stochastic differential equations (BDSDES), under which the infinite horizon BDSDES have a unique solution for any given square integrable terminal values. We also show continuous dependence theorem and convergence theorem for this kind of equations. (English)
Keyword: infinite horizon
Keyword: filtration
Keyword: backward stochastic integral
Keyword: backward doubly stochastic differential equations
MSC: 35R60
MSC: 60H10
idZBL: Zbl 1274.60193
idMR: MR3010242
DOI: 10.1007/s10492-012-0039-2
.
Date available: 2012-11-10T20:47:31Z
Last updated: 2020-07-02
Stable URL: http://hdl.handle.net/10338.dmlcz/143008
.
Reference: [1] Bally, V., Matoussi, A.: Weak solutions for SPDEs and backward doubly stochastic differential equations.J. Theor. Probab. 14 (2001), 125-164. MR 1822898, 10.1023/A:1007825232513
Reference: [2] Buckdahn, R., Ma, J.: Stochastic viscosity solutions for nonlinear stochastic partial differential equations. I.Stoch. Proc. Appl. 93 (2001), 181-204. Zbl 1053.60065, MR 1828772, 10.1016/S0304-4149(00)00093-4
Reference: [3] Buckdahn, R., Ma, J.: Stochastic viscosity solutions for nonlinear stochastic partial differential equations. II.Stoch. Proc. Appl. 93 (2001), 205-228. Zbl 1053.60066, MR 1831830, 10.1016/S0304-4149(00)00092-2
Reference: [4] Chen, Z., Wang, B.: Infinite time interval BSDE and the convergence of $g$-martingales.J. Aust. Math. Soc., Ser. A 69 (2000), 187-211. MR 1775178, 10.1017/S1446788700002172
Reference: [5] Darling, R., Pardoux, E.: Backward stochastic differential equations with random terminal time and applications to semilinear elliptic PDE.Ann. Probab. 25 (1997), 1135-1159. MR 1457614, 10.1214/aop/1024404508
Reference: [6] Karoui, N. El, Peng, S., Quenez, M. C.: Backward stochastic differential equations in finance.Math. Finance 7 (1977), 1-71. MR 1434407, 10.1111/1467-9965.00022
Reference: [7] Ma, J., Protter, P., Yong, J.: Solving forward-backward stochastic differential equations explicitly---a four step scheme.Theory Related Fields 98 (1994), 339-359. Zbl 0794.60056, MR 1262970, 10.1007/BF01192258
Reference: [8] Nualart, D., Pardoux, E.: Stochastic calculus with anticipating integrands.Probab. Theory Relat. Fields 78 (1988), 535-581. Zbl 0629.60061, MR 0950346, 10.1007/BF00353876
Reference: [9] Pardoux, E., Peng, S.: Adapted solution of a backward stochastic differential equation.Syst. Control Lett. 14 (1990), 55-61. Zbl 0692.93064, MR 1037747, 10.1016/0167-6911(90)90082-6
Reference: [10] Pardoux, E., Peng, S.: Backward doubly stochastic differential equations and systems of quasilinear SPDEs.Probab. Theory Relat. Fields 98 (1994), 209-227. Zbl 0792.60050, MR 1258986, 10.1007/BF01192514
Reference: [11] Pardoux, E.: Stochastic partial differential equations.Fudan Lecture Notes (2007).
Reference: [12] Peng, S.: Probabilistic interpretation for systems of quasilinear parabolic partial differential equations.Stochastics Stochastics Rep. 37 (1991), 61-74. Zbl 0739.60060, MR 1149116, 10.1080/17442509108833727
Reference: [13] Peng, S.: Backward Stochastic Differential Equations and Related $g$-expectation.Longman Harlow (1997), 141-159. MR 1752680
Reference: [14] Peng, S., Shi, Y.: Infinite horizon forward-backward stochastic differential equations.Stoch. Proc. Appl. 85 (2000), 75-92. Zbl 0997.60062, MR 1730617, 10.1016/S0304-4149(99)00066-6
Reference: [15] Peng, S., Shi, Y.: A type of time-symmetric forward-backward stochastic differential equations.C. R. Math., Acad. Sci. Paris 336 (2003), 773-778. Zbl 1031.60055, MR 1989279, 10.1016/S1631-073X(03)00183-3
Reference: [16] Zhang, Q., Zhao, H.: Stationary solutions of SPDEs and infinite horizon BDSDEs.J. Funct. Anal. 252 (2007), 171-219. Zbl 1127.60059, MR 2357354, 10.1016/j.jfa.2007.06.019
Reference: [17] Zhu, B., Han, B.: Comparison theorems for the multidimensional BDSDEs and applications.J. Appl. Math. 2012 (Article ID 3047)81, doi:10.1155/2012/304781. Zbl 1244.60064, MR 2910917, 10.1155/2012/304781
.

Files

Files Size Format View
AplMat_57-2012-6_7.pdf 264.3Kb application/pdf View/Open
Back to standard record
Partner of
EuDML logo