Previous |  Up |  Next

Article

Title: The diophantine equation $x^2+2^a\cdot 17^b=y^n$ (English)
Author: Gou, Su
Author: Wang, Tingting
Language: English
Journal: Czechoslovak Mathematical Journal
ISSN: 0011-4642 (print)
ISSN: 1572-9141 (online)
Volume: 62
Issue: 3
Year: 2012
Pages: 645-654
Summary lang: English
.
Category: math
.
Summary: Let $\mathbb {Z}$, $ \mathbb {N}$ be the sets of all integers and positive integers, respectively. Let $p$ be a fixed odd prime. Recently, there have been many papers concerned with solutions $(x, y, n, a, b)$ of the equation $ x^2+2^ap^b=y^n$, $x, y, n\in \mathbb {N}$, $\gcd (x, y)=1$, $n\geq 3$, $a, b\in \mathbb {Z}$, $a\geq 0$, $b\geq 0. $ And all solutions of it have been determined for the cases $p=3$, $p=5$, $p=11$ and $p=13$. In this paper, we mainly concentrate on the case $p=3$, and using certain recent results on exponential diophantine equations including the famous Catalan equation, all solutions $(x, y, n, a, b)$ of the equation $x^2+2^a\cdot 17^b=y^n$, $x, y, n\in \mathbb {N}$, $\gcd (x, y)=1$, $n\geq 3$, $a, b\in \mathbb {Z}$, $ a\geq 0$, $ b\geq 0$, are determined. (English)
Keyword: exponential diophantine equation
Keyword: modular approach
Keyword: arithmetic properties of Lucas numbers
MSC: 11D61
idZBL: Zbl 1265.11062
idMR: MR2984625
DOI: 10.1007/s10587-012-0056-z
.
Date available: 2012-11-10T21:03:24Z
Last updated: 2020-07-03
Stable URL: http://hdl.handle.net/10338.dmlcz/143016
.
Reference: [1] Abouzaid, M.: Lucas and Lehmer numbers without primitive divisor. (Les nombres de Lucas et Lehmer sans diviseur primitif).J. Théor. Nombres Bordx. (2006), 18 299-313. Zbl 1139.11011, MR 2289425, 10.5802/jtnb.545
Reference: [2] Bennett, M. A., Skinner, C. M.: Ternary diophantine equations via Galois representations and modular forms.Can. J. Math. (2004), 56 23-54. Zbl 1053.11025, MR 2031121
Reference: [3] Beukers, F.: On the generalized Ramanujan-Nagell equation. I.Acta Arith. (1980/81), 38 389-410. MR 0621008
Reference: [4] Bilu, Y., Hanrot, G., Voutier, P. M., Mignotte), (M.: Existence of primitive divisors of Lucas and Lehmer numbers (with an appendix by M. Mignotte).J. Reine Angew. Math. (2001), 539 75-122. MR 1863855
Reference: [5] Cangül, I. N., Demirci, M., Luca, F., Pintér, Á., Soydan, G.: On the diophantine equation $x^2+2^a\cdot 11^b=y^n$.Fibonacci Q. (2010), 48 39-46. MR 2663418
Reference: [6] Carmichael, R. D.: On the numerical factors of the arithmetic forms $\alpha^n\pm \beta^n$.Ann. of Math. (2) (1913/14), 15 30-48. MR 1502458
Reference: [7] Cohn, J. H. E.: The diophantine equations $x^3=Ny^2\pm 1$.Q. J. Math., Oxf. II. Ser. 42 (1991), 27-30. MR 1094339, 10.1093/qmath/42.1.27
Reference: [8] Cohn, J. H. E.: The diophantine equation $x^2+2^k=y^n$.Arch. Math. (1992), 59 341-344. MR 1179459, 10.1007/BF01197049
Reference: [9] Le, M.: Some exponential diophantine equations I: The equation $D_1x^2-D_2y^2=\lambda k^z$.J. Number Theory (1995), 55 209-221. MR 1366571, 10.1006/jnth.1995.1138
Reference: [10] Le, M.: On Cohn's conjecture concerning the diophantine equation $x^2+2^m=y^n$.Arch. Math. (2002), 78 26-35. MR 1887313, 10.1007/s00013-002-8213-5
Reference: [11] Ljunggren, W.: Einige Sätze über Unbestimmte Gleichungen von der Form $Ax^4+Bx^2+C =Dy^2$.German Skr. Norske Vid.-Akad., Oslo. I. Math.-Naturvid. Kl. No. 9. Oslo: Jacob Dybwad (1943). MR 0011476
Reference: [12] Luca, F.: On the equation $x^2+2^a\cdot 3^b=y^n$.Int. J. Math. Math. Sci. (2002), 29 239-244. MR 1897992
Reference: [13] Luca, F., Togbé, A.: On the diophantine equation $x^2+2^a\cdot 5^b=y^n$.Int. J. Number Theory (2008), 4 973-979. MR 2483306
Reference: [14] Luca, F., Togbé, A.: On the diophantine equation $x^2+2^\alpha 13^\beta=y^n$.Colloq. Math. (2009), 116 139-146. MR 2504836
Reference: [15] Mih$\check{a}$ilescu, P.: Primary cyclotomic units and a proof of Catalan's conjecture.J. Reine Angew. Math. (2004), 572 167-195. MR 2076124
Reference: [16] Rabinowicz, S.: The solution of $y^2\pm 2^n=x^3$.Proc. Amer. Math. Soc. (1976), 62 1-6.
Reference: [17] Siksek, S.: On the diophantine equation $x^2=y^p+2^kz^p$.J. Théor. Nombres Bordx. (2003), 15 839-846. Zbl 1026.11043, MR 2142239, 10.5802/jtnb.429
Reference: [18] Voutier, P. M.: Primitive divisors of Lucas and Lehmer sequences.Math. Comput. (1995), 64 869-888. Zbl 0832.11009, MR 1284673, 10.1090/S0025-5718-1995-1284673-6
.

Files

Files Size Format View
CzechMathJ_62-2012-3_6.pdf 245.4Kb application/pdf View/Open
Back to standard record
Partner of
EuDML logo