Previous |  Up |  Next

Article

Title: Second moments of Dirichlet $L$-functions weighted by Kloosterman sums (English)
Author: Wang, Tingting
Language: English
Journal: Czechoslovak Mathematical Journal
ISSN: 0011-4642 (print)
ISSN: 1572-9141 (online)
Volume: 62
Issue: 3
Year: 2012
Pages: 655-661
Summary lang: English
.
Category: math
.
Summary: For the general modulo $q\geq 3$ and a general multiplicative character $\chi $ modulo $q$, the upper bound estimate of $ |S(m, n, 1, \chi , q)| $ is a very complex and difficult problem. In most cases, the Weil type bound for $ |S(m, n, 1, \chi , q)| $ is valid, but there are some counterexamples. Although the value distribution of $ |S(m, n, 1, \chi , q)| $ is very complicated, it also exhibits many good distribution properties in some number theory problems. The main purpose of this paper is using the estimate for $k$-th Kloosterman sums and analytic method to study the asymptotic properties of the mean square value of Dirichlet $L$-functions weighted by Kloosterman sums, and give an interesting mean value formula for it, which extends the result in reference of W. Zhang, Y. Yi, X. He: On the $2k$-th power mean of Dirichlet L-functions with the weight of general Kloosterman sums, Journal of Number Theory, 84 (2000), 199–213. (English)
Keyword: general $k$-th Kloosterman sum
Keyword: Dirichlet $L$-function
Keyword: the mean square value
Keyword: asymptotic formula
MSC: 11L05
MSC: 11M06
MSC: 11M38
idZBL: Zbl 1265.11086
idMR: MR2984626
DOI: 10.1007/s10587-012-0057-y
.
Date available: 2012-11-10T21:04:32Z
Last updated: 2020-07-03
Stable URL: http://hdl.handle.net/10338.dmlcz/143017
.
Reference: [1] Apostol, T. M.: Introduction to Analytic Number Theory.Springer, New York (1976). Zbl 0335.10001, MR 0434929
Reference: [2] Chowla, S.: On Kloosterman's sum.Norske Vid. Selsk. Forhdl. 40 (1967), 70-72. Zbl 0157.09001, MR 0228452
Reference: [3] Cochrane, T., Pinner, C.: A further refinement of Mordell's bound on exponential sums.Acta Arith. 116 (2005), 35-41. Zbl 1082.11050, MR 2114903, 10.4064/aa116-1-4
Reference: [4] Cochrane, T., Zheng, Z.: Exponential sums with rational function entries.Acta Arith. 95 (2000), 67-95. Zbl 0956.11018, MR 1787206, 10.4064/aa-95-1-67-95
Reference: [5] Cochrane, T., Pinner, C.: Using Stepanov's method for exponential sums involving rational functions.J. Number Theory 116 (2006), 270-292. Zbl 1093.11058, MR 2195926, 10.1016/j.jnt.2005.04.001
Reference: [6] Deshouillers, J.-M., Iwaniec, H.: Kloosterman sums and Fourier coefficients of cusp forms.Invent. Math. 70 (1982), 219-288. Zbl 0502.10021, MR 0684172, 10.1007/BF01390728
Reference: [7] Estermann, T.: On Kloosterman's sum.Mathematika, Lond. 8 (1961), 83-86. Zbl 0114.26302, MR 0126420, 10.1112/S0025579300002187
Reference: [8] Iwaniec, H., Kowalski, E.: Analytic Number Theory.Colloquium Publicastions. American Mathematical Society 53. Providence, RI: American Mathematical Society (2004). Zbl 1059.11001, MR 2061214
Reference: [9] Malyshev, A. V.: A generalization of Kloosterman sums and their estimates.Russian Vestnik Leningrad Univ. 15 (1960), 59-75. MR 0125084
Reference: [10] Weil, A.: On some exponential sums.Proc. Natl. Acad. Sci. USA 34 (1948), 204-207. Zbl 0032.26102, MR 0027006, 10.1073/pnas.34.5.204
Reference: [11] Zhang, W., Yi, Y., He, X.: On the $2k$-th power mean of Dirichlet $L$-functions with the weight of general Kloosterman sums.J. Number Theory 84 (2000), 199-213. Zbl 0958.11061, MR 1795790, 10.1006/jnth.2000.2515
.

Files

Files Size Format View
CzechMathJ_62-2012-3_7.pdf 230.4Kb application/pdf View/Open
Back to standard record
Partner of
EuDML logo