Title:
|
Second moments of Dirichlet $L$-functions weighted by Kloosterman sums (English) |
Author:
|
Wang, Tingting |
Language:
|
English |
Journal:
|
Czechoslovak Mathematical Journal |
ISSN:
|
0011-4642 (print) |
ISSN:
|
1572-9141 (online) |
Volume:
|
62 |
Issue:
|
3 |
Year:
|
2012 |
Pages:
|
655-661 |
Summary lang:
|
English |
. |
Category:
|
math |
. |
Summary:
|
For the general modulo $q\geq 3$ and a general multiplicative character $\chi $ modulo $q$, the upper bound estimate of $ |S(m, n, 1, \chi , q)| $ is a very complex and difficult problem. In most cases, the Weil type bound for $ |S(m, n, 1, \chi , q)| $ is valid, but there are some counterexamples. Although the value distribution of $ |S(m, n, 1, \chi , q)| $ is very complicated, it also exhibits many good distribution properties in some number theory problems. The main purpose of this paper is using the estimate for $k$-th Kloosterman sums and analytic method to study the asymptotic properties of the mean square value of Dirichlet $L$-functions weighted by Kloosterman sums, and give an interesting mean value formula for it, which extends the result in reference of W. Zhang, Y. Yi, X. He: On the $2k$-th power mean of Dirichlet L-functions with the weight of general Kloosterman sums, Journal of Number Theory, 84 (2000), 199–213. (English) |
Keyword:
|
general $k$-th Kloosterman sum |
Keyword:
|
Dirichlet $L$-function |
Keyword:
|
the mean square value |
Keyword:
|
asymptotic formula |
MSC:
|
11L05 |
MSC:
|
11M06 |
MSC:
|
11M38 |
idZBL:
|
Zbl 1265.11086 |
idMR:
|
MR2984626 |
DOI:
|
10.1007/s10587-012-0057-y |
. |
Date available:
|
2012-11-10T21:04:32Z |
Last updated:
|
2020-07-03 |
Stable URL:
|
http://hdl.handle.net/10338.dmlcz/143017 |
. |
Reference:
|
[1] Apostol, T. M.: Introduction to Analytic Number Theory.Springer, New York (1976). Zbl 0335.10001, MR 0434929 |
Reference:
|
[2] Chowla, S.: On Kloosterman's sum.Norske Vid. Selsk. Forhdl. 40 (1967), 70-72. Zbl 0157.09001, MR 0228452 |
Reference:
|
[3] Cochrane, T., Pinner, C.: A further refinement of Mordell's bound on exponential sums.Acta Arith. 116 (2005), 35-41. Zbl 1082.11050, MR 2114903, 10.4064/aa116-1-4 |
Reference:
|
[4] Cochrane, T., Zheng, Z.: Exponential sums with rational function entries.Acta Arith. 95 (2000), 67-95. Zbl 0956.11018, MR 1787206, 10.4064/aa-95-1-67-95 |
Reference:
|
[5] Cochrane, T., Pinner, C.: Using Stepanov's method for exponential sums involving rational functions.J. Number Theory 116 (2006), 270-292. Zbl 1093.11058, MR 2195926, 10.1016/j.jnt.2005.04.001 |
Reference:
|
[6] Deshouillers, J.-M., Iwaniec, H.: Kloosterman sums and Fourier coefficients of cusp forms.Invent. Math. 70 (1982), 219-288. Zbl 0502.10021, MR 0684172, 10.1007/BF01390728 |
Reference:
|
[7] Estermann, T.: On Kloosterman's sum.Mathematika, Lond. 8 (1961), 83-86. Zbl 0114.26302, MR 0126420, 10.1112/S0025579300002187 |
Reference:
|
[8] Iwaniec, H., Kowalski, E.: Analytic Number Theory.Colloquium Publicastions. American Mathematical Society 53. Providence, RI: American Mathematical Society (2004). Zbl 1059.11001, MR 2061214 |
Reference:
|
[9] Malyshev, A. V.: A generalization of Kloosterman sums and their estimates.Russian Vestnik Leningrad Univ. 15 (1960), 59-75. MR 0125084 |
Reference:
|
[10] Weil, A.: On some exponential sums.Proc. Natl. Acad. Sci. USA 34 (1948), 204-207. Zbl 0032.26102, MR 0027006, 10.1073/pnas.34.5.204 |
Reference:
|
[11] Zhang, W., Yi, Y., He, X.: On the $2k$-th power mean of Dirichlet $L$-functions with the weight of general Kloosterman sums.J. Number Theory 84 (2000), 199-213. Zbl 0958.11061, MR 1795790, 10.1006/jnth.2000.2515 |
. |