Previous |  Up |  Next

Article

Keywords:
$M(r,s)$-ideal and $M$-ideal of compact operators; property $M^\ast (r,s)$; compact approximation property
Summary:
We study the position of compact operators in the space of all continuous linear operators and its subspaces in terms of ideals. One of our main results states that for Banach spaces $X$ and $Y$ the subspace of all compact operators $\mathcal K(X,Y)$ is an $M(r_1 r_2, s_1 s_2)$-ideal in the space of all continuous linear operators $\mathcal L(X,Y)$ whenever $\mathcal K(X,X)$ and $\mathcal K(Y,Y)$ are $M(r_1,s_1)$- and $M(r_2,s_2)$-ideals in $\mathcal L(X,X)$ and $\mathcal L(Y,Y)$, respectively, with $r_1+s_1/2>1$ and $r_2+s_2/2>1$. We also prove that the $M(r,s)$-ideal $\mathcal K(X,Y)$ in $\mathcal L(X,Y)$ is separably determined. Among others, our results complete and improve some well-known results on $M$-ideals.
References:
[1] Ausekle, J., Oja, E.: Compactness of operators acting from a Lorentz sequence space to an Orlicz sequence space. Ark. Mat. 36 (1998), 233-239. DOI 10.1007/BF02384767 | MR 1650589 | Zbl 1037.47504
[2] Cabello, J. C., Nieto, E.: On properties of $M$-ideals. Rocky Mt. J. Math. 28 (1998), 61-93. DOI 10.1216/rmjm/1181071823 | MR 1639829 | Zbl 0936.46014
[3] Cabello, J. C., Nieto, E.: An ideal characterization of when a subspace of certain Banach spaces has the metric compact approximation property. Stud. Math. 129 (1998), 185-196. MR 1608091 | Zbl 0913.46019
[4] Cabello, J. C., Nieto, E.: On $M$-type structures and the fixed point property. Houston J. Math. 26 (2000), 549-560. MR 1811941 | Zbl 0984.46009
[5] Cabello, J. C., Nieto, E., Oja, E.: On ideals of compact operators satisfying the $M(r,s)$-inequality. J. Math. Anal. Appl. 220 (1998), 334-348. DOI 10.1006/jmaa.1997.5888 | MR 1613976 | Zbl 0917.47040
[6] Cho, C.-M., Johnson, W. B.: A characterization of subspaces $X$ of $l_p$ for which $K(X)$ is an {$M$}-ideal in $L(X)$. Proc. Am. Math. Soc. 93 (1985), 466-470. MR 0774004
[7] Feder, M., Saphar, P.: Spaces of compact operators and their dual spaces. Isr. J. Math. 21 (1975), 38-49. DOI 10.1007/BF02757132 | MR 0377591 | Zbl 0325.47028
[8] Godefroy, G., Saphar, P. D.: Duality in spaces of operators and smooth norms on Banach spaces. Ill. J. Math. 32 (1988), 672-695. MR 0955384 | Zbl 0631.46015
[9] Haller, R., Johanson, M., Oja, E.: $M(r,s)$-inequality for $\mathcal K(X,Y)$ in $\mathcal L(X,Y)$. Acta Comment. Univ. Tartu. Math. 11 (2007), 69-76. MR 2391972
[10] Haller, R., Oja, E.: Geometric characterizations of positions of Banach spaces in their biduals. Arch. Math. 69 (1997), 227-233. DOI 10.1007/s000130050114 | MR 1464553 | Zbl 0914.46019
[11] Harmand, P., Werner, D., Werner, W.: $M$-ideals in Banach Spaces and Banach Algebras. Lecture Notes in Mathematics, Vol. 1547. Springer Berlin (1993). MR 1238713
[12] Heinrich, S.: The reflexivity of the Banach space $L(E,F)$. Funkcional. Anal. i Prilož. 8 (1974), 97-98 Russian. MR 0342991 | Zbl 0295.46040
[13] Hennefeld, J.: $M$-ideals, $HB$-subspaces, and compact operators. Indiana Univ. Math. J. 28 (1979), 927-934. DOI 10.1512/iumj.1979.28.28065 | MR 0551156 | Zbl 0464.46020
[14] John, K., Werner, D.: $M$-ideals of compact operators into $\ell_p$. Czech. Math. J. 50 (125) (2000), 51-57. DOI 10.1023/A:1022433018736 | MR 1745458 | Zbl 1040.46020
[15] Johnson, J.: Remarks on Banach spaces of compact operators. J. Funct. Anal. 32 (1979), 304-311. DOI 10.1016/0022-1236(79)90042-9 | MR 0538857 | Zbl 0412.47024
[16] Kahre, Ü., Kirikal, L., Oja, E.: On $M$-ideals of compact operators in Lorentz sequence spaces. J. Math. Anal. Appl. 259 (2001), 439-452. DOI 10.1006/jmaa.2000.7413 | MR 1842070 | Zbl 0997.46016
[17] Kalton, N. J.: Spaces of compact operators. Math. Ann. 208 (1974), 267-278. DOI 10.1007/BF01432152 | MR 0341154 | Zbl 0266.47038
[18] Kalton, N. J.: Banach spaces for which the ideal of compact operators is an $M$-ideal. C. R. Acad. Sci. Paris, Sér. I Math. 313 (1991), 509-513. MR 1131865 | Zbl 0755.46006
[19] Kalton, N. J.: $M$-ideals of compact operators. Ill. J. Math. 37 (1993), 147-169. MR 1193134 | Zbl 0824.46029
[20] Kalton, N. J., Werner, D.: Property $(M)$, $M$-ideals, and almost isometric structure of Banach spaces. J. Reine Angew. Math. 461 (1995), 137-178. MR 1324212 | Zbl 0823.46018
[21] Kivisoo, K., Oja, E.: Extension of Simons' inequality. Proc. Am. Math. Soc. 133 (2005), 3485-3496. DOI 10.1090/S0002-9939-05-08267-5 | MR 2163583 | Zbl 1078.39025
[22] Lima, Å.: Property $(wM^\ast)$ and the unconditional metric compact approximation property. Stud. Math. 113 (1995), 249-263. MR 1330210 | Zbl 0826.46013
[23] Lima, Å., Nygaard, O., Oja, E.: Isometric factorization of weakly compact operators and the approximation property. Isr. J. Math. 119 (2000), 325-348. DOI 10.1007/BF02810673 | MR 1802659 | Zbl 0983.46024
[24] Lima, Å., Oja, E.: Ideals of compact operators. J. Aust. Math. Soc. 77 (2004), 91-110. DOI 10.1017/S144678870001017X | MR 2069027 | Zbl 1082.46016
[25] Lima, Å., Oja, E., Rao, T. S. S. R. K., Werner, D.: Geometry of operator spaces. Mich. Math. J. 41 (1994), 473-490. DOI 10.1307/mmj/1029005074 | MR 1297703 | Zbl 0823.46023
[26] Nygaard, O., Põldvere, M.: Johnson's projection, Kalton's property $(M^*)$, and $M$-ideals of compact operators. Stud. Math. 195 (2009), 243-255. DOI 10.4064/sm195-3-4 | MR 2559175 | Zbl 1192.46011
[27] Oja, E.: Strong uniqueness of the extension of linear continuous functionals according to the Hahn-Banach theorem. Mat. Zametki 43 (1988), 237-246, 302 Russian translation in Math. Notes 43 (1988), 134-139. MR 0939524
[28] Oja, E.: Dual de l'espace des opérateurs linéaires continus. C. R. Acad. Sci. Paris, Sér. I Math. 309 (1989), 983-986 French. MR 1054748 | Zbl 0684.47025
[29] Oja, E.: Extensions of Functionals and the Structure of the Space of Continuous Linear Operators. Tartu Univ. Publ. Tartu (1991), Russian. MR 1114543
[30] Oja, E.: On $M$-ideals of compact operators and Lorentz sequence spaces. Eesti Tead. Akad. Toim., Füüs. Mat. 40 (1991), 31-36. MR 1124516 | Zbl 0804.46028
[31] Oja, E.: A note on $M$-ideals of compact operators. Tartu Ülikooli Toimetised 960 (1993), 75-92. MR 1231939 | Zbl 1214.46005
[32] Oja, E.: $HB$-subspaces and Godun sets of subspaces in Banach spaces. Mathematika 44 (1997), 120-132. DOI 10.1112/S002557930001202X | MR 1464382 | Zbl 0878.46013
[33] Oja, E.: $M$-ideals of compact operators are separably determined. Proc. Am. Math. Soc. 126 (1998), 2747-2753. DOI 10.1090/S0002-9939-98-04600-0 | MR 1469429 | Zbl 0899.46014
[34] Oja, E.: Géométrie des espaces de Banach ayant des approximations de l'identité contractantes. C. R. Acad. Sci. Paris, Sér. I Math. 328 (1999), 1167-1170 French. DOI 10.1016/S0764-4442(99)80433-9 | MR 1701379 | Zbl 0934.46012
[35] Oja, E.: Geometry of Banach spaces having shrinking approximations of the identity. Trans. Am. Math. Soc. 352 (2000), 2801-2823. DOI 10.1090/S0002-9947-00-02521-6 | MR 1675226 | Zbl 0954.46010
[36] Oja, E., Põldvere, M.: On subspaces of Banach spaces where every functional has a unique norm-preserving extension. Stud. Math. 117 (1996), 289-306. MR 1373851 | Zbl 0854.46014
[37] Oja, E., Põldvere, M.: Intersection properties of ball sequences and uniqueness of Hahn-Banach extensions. Proc. R. Soc. Edinb., Sect. A 129 (1999), 1251-1262. DOI 10.1017/S0308210500019375 | MR 1728530 | Zbl 0938.46018
[38] Oja, E., Zolk, I.: On commuting approximation properties of Banach spaces. Proc. R. Soc. Edinb., Sect. A 139 (2009), 551-565. DOI 10.1017/S0308210507001266 | MR 2506787 | Zbl 1180.46013
[39] Põldvere, M.: Phelps' uniqueness property for $K(X,Y)$ in $L(X,Y)$. Rocky Mt. J. Math. 36 (2006), 1651-1663. DOI 10.1216/rmjm/1181069389 | MR 2285307
[40] Werner, D.: $M$-ideals and the ``basic inequality''. J. Approximation Theory 76 (1994), 21-30. DOI 10.1006/jath.1994.1002 | MR 1257062 | Zbl 0797.41019
Partner of
EuDML logo