Previous |  Up |  Next

Article

Title: $M(r,s)$-ideals of compact operators (English)
Author: Haller, Rainis
Author: Johanson, Marje
Author: Oja, Eve
Language: English
Journal: Czechoslovak Mathematical Journal
ISSN: 0011-4642 (print)
ISSN: 1572-9141 (online)
Volume: 62
Issue: 3
Year: 2012
Pages: 673-693
Summary lang: English
.
Category: math
.
Summary: We study the position of compact operators in the space of all continuous linear operators and its subspaces in terms of ideals. One of our main results states that for Banach spaces $X$ and $Y$ the subspace of all compact operators $\mathcal K(X,Y)$ is an $M(r_1 r_2, s_1 s_2)$-ideal in the space of all continuous linear operators $\mathcal L(X,Y)$ whenever $\mathcal K(X,X)$ and $\mathcal K(Y,Y)$ are $M(r_1,s_1)$- and $M(r_2,s_2)$-ideals in $\mathcal L(X,X)$ and $\mathcal L(Y,Y)$, respectively, with $r_1+s_1/2>1$ and $r_2+s_2/2>1$. We also prove that the $M(r,s)$-ideal $\mathcal K(X,Y)$ in $\mathcal L(X,Y)$ is separably determined. Among others, our results complete and improve some well-known results on $M$-ideals. (English)
Keyword: $M(r,s)$-ideal and $M$-ideal of compact operators
Keyword: property $M^\ast (r,s)$
Keyword: compact approximation property
MSC: 46B04
MSC: 46B20
MSC: 46B28
MSC: 47L05
idZBL: Zbl 1265.46023
idMR: MR2984628
DOI: 10.1007/s10587-012-0059-9
.
Date available: 2012-11-10T21:08:21Z
Last updated: 2020-07-03
Stable URL: http://hdl.handle.net/10338.dmlcz/143019
.
Reference: [1] Ausekle, J., Oja, E.: Compactness of operators acting from a Lorentz sequence space to an Orlicz sequence space.Ark. Mat. 36 (1998), 233-239. Zbl 1037.47504, MR 1650589, 10.1007/BF02384767
Reference: [2] Cabello, J. C., Nieto, E.: On properties of $M$-ideals.Rocky Mt. J. Math. 28 (1998), 61-93. Zbl 0936.46014, MR 1639829, 10.1216/rmjm/1181071823
Reference: [3] Cabello, J. C., Nieto, E.: An ideal characterization of when a subspace of certain Banach spaces has the metric compact approximation property.Stud. Math. 129 (1998), 185-196. Zbl 0913.46019, MR 1608091, 10.4064/sm-129-2-185-196
Reference: [4] Cabello, J. C., Nieto, E.: On $M$-type structures and the fixed point property.Houston J. Math. 26 (2000), 549-560. Zbl 0984.46009, MR 1811941
Reference: [5] Cabello, J. C., Nieto, E., Oja, E.: On ideals of compact operators satisfying the $M(r,s)$-inequality.J. Math. Anal. Appl. 220 (1998), 334-348. Zbl 0917.47040, MR 1613976, 10.1006/jmaa.1997.5888
Reference: [6] Cho, C.-M., Johnson, W. B.: A characterization of subspaces $X$ of $l_p$ for which $K(X)$ is an {$M$}-ideal in $L(X)$.Proc. Am. Math. Soc. 93 (1985), 466-470. MR 0774004
Reference: [7] Feder, M., Saphar, P.: Spaces of compact operators and their dual spaces.Isr. J. Math. 21 (1975), 38-49. Zbl 0325.47028, MR 0377591, 10.1007/BF02757132
Reference: [8] Godefroy, G., Saphar, P. D.: Duality in spaces of operators and smooth norms on Banach spaces.Ill. J. Math. 32 (1988), 672-695. Zbl 0631.46015, MR 0955384, 10.1215/ijm/1255988868
Reference: [9] Haller, R., Johanson, M., Oja, E.: $M(r,s)$-inequality for $\mathcal K(X,Y)$ in $\mathcal L(X,Y)$.Acta Comment. Univ. Tartu. Math. 11 (2007), 69-76. MR 2391972
Reference: [10] Haller, R., Oja, E.: Geometric characterizations of positions of Banach spaces in their biduals.Arch. Math. 69 (1997), 227-233. Zbl 0914.46019, MR 1464553, 10.1007/s000130050114
Reference: [11] Harmand, P., Werner, D., Werner, W.: $M$-ideals in Banach Spaces and Banach Algebras. Lecture Notes in Mathematics, Vol. 1547.Springer Berlin (1993). MR 1238713
Reference: [12] Heinrich, S.: The reflexivity of the Banach space $L(E,F)$.Funkcional. Anal. i Prilož. 8 (1974), 97-98 Russian. Zbl 0295.46040, MR 0342991
Reference: [13] Hennefeld, J.: $M$-ideals, $HB$-subspaces, and compact operators.Indiana Univ. Math. J. 28 (1979), 927-934. Zbl 0464.46020, MR 0551156, 10.1512/iumj.1979.28.28065
Reference: [14] John, K., Werner, D.: $M$-ideals of compact operators into $\ell_p$.Czech. Math. J. 50 (125) (2000), 51-57. Zbl 1040.46020, MR 1745458, 10.1023/A:1022433018736
Reference: [15] Johnson, J.: Remarks on Banach spaces of compact operators.J. Funct. Anal. 32 (1979), 304-311. Zbl 0412.47024, MR 0538857, 10.1016/0022-1236(79)90042-9
Reference: [16] Kahre, Ü., Kirikal, L., Oja, E.: On $M$-ideals of compact operators in Lorentz sequence spaces.J. Math. Anal. Appl. 259 (2001), 439-452. Zbl 0997.46016, MR 1842070, 10.1006/jmaa.2000.7413
Reference: [17] Kalton, N. J.: Spaces of compact operators.Math. Ann. 208 (1974), 267-278. Zbl 0266.47038, MR 0341154, 10.1007/BF01432152
Reference: [18] Kalton, N. J.: Banach spaces for which the ideal of compact operators is an $M$-ideal.C. R. Acad. Sci. Paris, Sér. I Math. 313 (1991), 509-513. Zbl 0755.46006, MR 1131865
Reference: [19] Kalton, N. J.: $M$-ideals of compact operators.Ill. J. Math. 37 (1993), 147-169. Zbl 0824.46029, MR 1193134, 10.1215/ijm/1255987254
Reference: [20] Kalton, N. J., Werner, D.: Property $(M)$, $M$-ideals, and almost isometric structure of Banach spaces.J. Reine Angew. Math. 461 (1995), 137-178. Zbl 0823.46018, MR 1324212
Reference: [21] Kivisoo, K., Oja, E.: Extension of Simons' inequality.Proc. Am. Math. Soc. 133 (2005), 3485-3496. Zbl 1078.39025, MR 2163583, 10.1090/S0002-9939-05-08267-5
Reference: [22] Lima, Å.: Property $(wM^\ast)$ and the unconditional metric compact approximation property.Stud. Math. 113 (1995), 249-263. Zbl 0826.46013, MR 1330210, 10.4064/sm-113-3-249-263
Reference: [23] Lima, Å., Nygaard, O., Oja, E.: Isometric factorization of weakly compact operators and the approximation property.Isr. J. Math. 119 (2000), 325-348. Zbl 0983.46024, MR 1802659, 10.1007/BF02810673
Reference: [24] Lima, Å., Oja, E.: Ideals of compact operators.J. Aust. Math. Soc. 77 (2004), 91-110. Zbl 1082.46016, MR 2069027, 10.1017/S144678870001017X
Reference: [25] Lima, Å., Oja, E., Rao, T. S. S. R. K., Werner, D.: Geometry of operator spaces.Mich. Math. J. 41 (1994), 473-490. Zbl 0823.46023, MR 1297703, 10.1307/mmj/1029005074
Reference: [26] Nygaard, O., Põldvere, M.: Johnson's projection, Kalton's property $(M^*)$, and $M$-ideals of compact operators.Stud. Math. 195 (2009), 243-255. Zbl 1192.46011, MR 2559175, 10.4064/sm195-3-4
Reference: [27] Oja, E.: Strong uniqueness of the extension of linear continuous functionals according to the Hahn-Banach theorem.Mat. Zametki 43 (1988), 237-246, 302 Russian translation in Math. Notes 43 (1988), 134-139. MR 0939524
Reference: [28] Oja, E.: Dual de l'espace des opérateurs linéaires continus.C. R. Acad. Sci. Paris, Sér. I Math. 309 (1989), 983-986 French. Zbl 0684.47025, MR 1054748
Reference: [29] Oja, E.: Extensions of Functionals and the Structure of the Space of Continuous Linear Operators.Tartu Univ. Publ. Tartu (1991), Russian. MR 1114543
Reference: [30] Oja, E.: On $M$-ideals of compact operators and Lorentz sequence spaces.Eesti Tead. Akad. Toim., Füüs. Mat. 40 (1991), 31-36. Zbl 0804.46028, MR 1124516
Reference: [31] Oja, E.: A note on $M$-ideals of compact operators.Tartu Ülikooli Toimetised 960 (1993), 75-92. Zbl 1214.46005, MR 1231939
Reference: [32] Oja, E.: $HB$-subspaces and Godun sets of subspaces in Banach spaces.Mathematika 44 (1997), 120-132. Zbl 0878.46013, MR 1464382, 10.1112/S002557930001202X
Reference: [33] Oja, E.: $M$-ideals of compact operators are separably determined.Proc. Am. Math. Soc. 126 (1998), 2747-2753. Zbl 0899.46014, MR 1469429, 10.1090/S0002-9939-98-04600-0
Reference: [34] Oja, E.: Géométrie des espaces de Banach ayant des approximations de l'identité contractantes.C. R. Acad. Sci. Paris, Sér. I Math. 328 (1999), 1167-1170 French. Zbl 0934.46012, MR 1701379, 10.1016/S0764-4442(99)80433-9
Reference: [35] Oja, E.: Geometry of Banach spaces having shrinking approximations of the identity.Trans. Am. Math. Soc. 352 (2000), 2801-2823. Zbl 0954.46010, MR 1675226, 10.1090/S0002-9947-00-02521-6
Reference: [36] Oja, E., Põldvere, M.: On subspaces of Banach spaces where every functional has a unique norm-preserving extension.Stud. Math. 117 (1996), 289-306. Zbl 0854.46014, MR 1373851
Reference: [37] Oja, E., Põldvere, M.: Intersection properties of ball sequences and uniqueness of Hahn-Banach extensions.Proc. R. Soc. Edinb., Sect. A 129 (1999), 1251-1262. Zbl 0938.46018, MR 1728530, 10.1017/S0308210500019375
Reference: [38] Oja, E., Zolk, I.: On commuting approximation properties of Banach spaces.Proc. R. Soc. Edinb., Sect. A 139 (2009), 551-565. Zbl 1180.46013, MR 2506787, 10.1017/S0308210507001266
Reference: [39] Põldvere, M.: Phelps' uniqueness property for $K(X,Y)$ in $L(X,Y)$.Rocky Mt. J. Math. 36 (2006), 1651-1663. MR 2285307, 10.1216/rmjm/1181069389
Reference: [40] Werner, D.: $M$-ideals and the ``basic inequality''.J. Approximation Theory 76 (1994), 21-30. Zbl 0797.41019, MR 1257062, 10.1006/jath.1994.1002
.

Files

Files Size Format View
CzechMathJ_62-2012-3_9.pdf 346.1Kb application/pdf View/Open
Back to standard record
Partner of
EuDML logo