Previous |  Up |  Next

Article

Title: The Kurzweil-Henstock theory of stochastic integration (English)
Author: Toh, Tin-Lam
Author: Chew, Tuan-Seng
Language: English
Journal: Czechoslovak Mathematical Journal
ISSN: 0011-4642 (print)
ISSN: 1572-9141 (online)
Volume: 62
Issue: 3
Year: 2012
Pages: 829-848
Summary lang: English
.
Category: math
.
Summary: The Kurzweil-Henstock approach has been successful in giving an alternative definition to the classical Itô integral, and a simpler and more direct proof of the Itô Formula. The main advantage of this approach lies in its explicitness in defining the integral, thereby reducing the technicalities of the classical stochastic calculus. In this note, we give a unified theory of stochastic integration using the Kurzweil-Henstock approach, using the more general martingale as the integrator. We derive Henstock's Lemmas, absolute continuity property of the primitive process, integrability of stochastic processes and convergence theorems for the Kurzweil-Henstock stochastic integrals. These properties are well-known in the classical (non-stochastic) integration theory but have not been explicitly derived in the classical stochastic integration. (English)
Keyword: stochastic integral
Keyword: Kurzweil-Henstock
Keyword: convergence theorem
MSC: 26A39
MSC: 60H05
idZBL: Zbl 1265.26020
idMR: MR2984637
DOI: 10.1007/s10587-012-0048-z
.
Date available: 2012-11-10T21:21:33Z
Last updated: 2020-07-03
Stable URL: http://hdl.handle.net/10338.dmlcz/143028
.
Reference: [1] Chew, T. S., Lee, P. Y.: Nonabsolute integration using Vitali covers.N. Z. J. Math. 23 (1994), 25-36. Zbl 0832.26005, MR 1279123
Reference: [2] Chew, T. S., Toh, T. L., Tay, J. Y.: The non-uniform Riemann approach to Itô's integral.Real Anal. Exch. 27 (2002), 495-514. Zbl 1067.60025, MR 1922665, 10.14321/realanalexch.27.2.0495
Reference: [3] Chung, K. L., Williams, R. J.: Introduction to Stochastic Integration, 2nd edition.Birkhäuser Boston (1990). MR 1102676
Reference: [4] Henstock, R.: The efficiency of convergence factors for functions of a continuous real variable.J. Lond. Math. Soc. 30 (1955), 273-286. Zbl 0066.09204, MR 0072968, 10.1112/jlms/s1-30.3.273
Reference: [5] Henstock, R.: Lectures on the Theory of Integration.World Scientific Singapore (1988). Zbl 0668.28001, MR 0963249
Reference: [6] Henstock, R.: The General Theory of Integration.Clarendon Press Oxford (1991). Zbl 0745.26006, MR 1134656
Reference: [7] Henstock, R.: Stochastic and other functional integrals.Real Anal. Exch. 16 (1991), 460-470. Zbl 0727.28013, MR 1112038, 10.2307/44153722
Reference: [8] Hitsuda, M.: Formula for Brownian partial derivatives.Publ. Fac. of Integrated Arts and Sciences Hiroshima Univ. 3 (1979), 1-15.
Reference: [9] Lee, P. Y., Výborný, R.: The Integral: An Easy Approach after Kurzweil and Henstock.Cambridge University Press Cambridge (2000). MR 1756319
Reference: [10] Lee, T. W.: On the generalized Riemann integral and stochastic integral.J. Aust. Math. Soc. 21 (1976), 64-71. Zbl 0314.28009, MR 0435334, 10.1017/S144678870001692X
Reference: [11] Marraffa, V.: A descriptive characterization of the variational Henstock integral. Proceedings of the International Mathematics Conference in honor of Professor Lee Peng Yee on his 60th Birthday, Manila, 1998.Matimyás Mat. 22 (1999), 73-84. MR 1770168
Reference: [12] McShane, E. J.: Stochastic Calculus and Stochastic Models.Academic Press New York (1974). Zbl 0292.60090, MR 0443084
Reference: [13] Mouldowney, P.: A General Theory of Integration in Function Spaces. Pitman Research Notes in Math. 153.Longman Harlow (1987).
Reference: [14] Nualart, D.: The Malliavin Calculus and Related Topics.Springer New York (1995). Zbl 0837.60050, MR 1344217
Reference: [15] Nualart, D., Pardoux, E.: Stochastic calculus with anticipating integrands.Probab. Theory Relat. Fields 78 (1988), 535-581. Zbl 0629.60061, MR 0950346, 10.1007/BF00353876
Reference: [16] Pardoux, E., Protter, P.: A two-sided stochastic integral and its calculus.Probab. Theory Relat. Fields 76 (1987), 15-49. Zbl 0608.60058, MR 0899443, 10.1007/BF00390274
Reference: [17] Pop-Stojanovic, Z. R.: On McShane's belated stochastic integral.SIAM J. Appl. Math. 22 (1972), 87-92. Zbl 0243.60035, MR 0322954, 10.1137/0122010
Reference: [18] Protter, P.: A comparison of stochastic integrals.Ann. Probab. 7 (1979), 276-289. Zbl 0404.60062, MR 0525054, 10.1214/aop/1176995088
Reference: [19] Protter, P.: Stochastic Integration and Differential Equations.Springer New York (1990). Zbl 0694.60047, MR 1037262
Reference: [20] Revuz, D., Yor, M.: Continuous Martingales and Brownian Motion, 2nd edition.Springer Berlin (1994). MR 1303781
Reference: [21] Skorohod, A. V.: On a generalisation of a stochastic integral.Theory Probab. Appl. 20 (1975), 219-233. MR 0391258
Reference: [22] Stratonovich, R. L.: A new representation for stochastic integrals and equations.J. SIAM Control 4 (1966), 362-371. MR 0196814, 10.1137/0304028
Reference: [23] Toh, T. L., Chew, T. S.: A Variational Approach to Itô's Integral. Proceedings of SAP's 98, Taiwan.World Scientific Singapore (1999), 291-299. MR 1819215
Reference: [24] Toh, T. L., Chew, T. S.: The Riemann approach to stochastic integration using non-uniform meshes.J. Math. Anal. Appl. 280 (2003), 133-147. Zbl 1022.60055, MR 1972197, 10.1016/S0022-247X(03)00059-3
Reference: [25] Toh, T. L., Chew, T. S.: The non-uniform Riemann approach to multiple Itô-Wiener integral.Real Anal. Exch. 29 (2003-2004), 275-290. MR 2061311
Reference: [26] Toh, T. L., Chew, T. S.: On the Henstock-Fubini Theorem for multiple stochastic integral.Real Anal. Exch. 30 (2004-2005), 295-310. MR 2127534
Reference: [27] Toh, T. L., Chew, T. S.: On Henstock's multiple Wiener integral and Henstock's version of Hu-Meyer theorem.J. Math. Comput. Modeling 42 (2005), 139-149. MR 2162393, 10.1016/j.mcm.2004.03.008
Reference: [28] Toh, T. L., Chew, T. S.: On Itô-Kurzweil-Henstock integral and integration-by-part formula.Czech. Math. J. 55 (2005), 653-663. Zbl 1081.26005, MR 2153089, 10.1007/s10587-005-0052-7
Reference: [29] Toh, T. L., Chew, T. S.: On belated differentiation and a characterization of Henstock-Kurzweil-Itô integrable processes.Math. Bohem. 130 (2005), 63-73. Zbl 1112.26012, MR 2128359
Reference: [30] Toh, T. L., Chew, T. S.: Henstock's version of Itô's formula.Real Anal. Exch. 35 (2009-2010), 375-3901-20. MR 2683604
Reference: [31] Weizsäcker, H., G., G. Winkler: Stochastic Integrals: An introduction.Friedr. Vieweg & Sohn (1990). Zbl 0718.60049, MR 1062600
Reference: [32] Wong, E., Zakai, M.: An extension of stochastic integrals in the plane.Ann. Probab. 5 (1977), 770-778. Zbl 0376.60060, MR 0448555, 10.1214/aop/1176995718
Reference: [33] Xu, J. G., Lee, P. Y.: Stochastic integrals of Itô and Henstock.Real Anal. Exch. 18 (1992-1993), 352-366. MR 1228401
Reference: [34] Yeh, H.: Martingales and Stochastic Analysis.World Scientific Singapore (1995). Zbl 0848.60001, MR 1412800
Reference: [35] Zähle, M.: Integration with respect to fractal functions and stochastic calculus I.Probab. Th. Rel. Fields 111 (1998), 337-374. Zbl 0918.60037, MR 1640795
.

Files

Files Size Format View
CzechMathJ_62-2012-3_18.pdf 316.2Kb application/pdf View/Open
Back to standard record
Partner of
EuDML logo