Previous |  Up |  Next

Article

Title: Diversity in inside factorial monoids (English)
Author: Krause, Ulrich
Author: Maney, Jack
Author: Ponomarenko, Vadim
Language: English
Journal: Czechoslovak Mathematical Journal
ISSN: 0011-4642 (print)
ISSN: 1572-9141 (online)
Volume: 62
Issue: 3
Year: 2012
Pages: 811-827
Summary lang: English
.
Category: math
.
Summary: In a recent paper (Diversity in Monoids, Czech. Math. J. 62 (2012), 795–809), the last two authors introduced and developed the monoid invariant “diversity” and related properties “homogeneity” and “strong homogeneity”. We investigate these properties within the context of inside factorial monoids, in which the diversity of an element counts the number of its different almost primary components. Inside factorial monoids are characterized via diversity and strong homogeneity. A new invariant complementary to diversity, height, is introduced. These two invariants are connected with the well-known invariant of elasticity. (English)
Keyword: factorization
Keyword: monoid
Keyword: elasticity
Keyword: diversity
MSC: 11B75
MSC: 11N80
MSC: 13A05
MSC: 20M05
MSC: 20M14
idZBL: Zbl 1265.20061
idMR: MR2984636
DOI: 10.1007/s10587-012-0047-0
.
Date available: 2012-11-10T21:19:02Z
Last updated: 2020-07-03
Stable URL: http://hdl.handle.net/10338.dmlcz/143027
.
Reference: [1] Anderson, D. D., Anderson, D. F.: Elasticity of factorizations in integral domains.J. Pure Appl. Algebra 80 (1992), 217-235. Zbl 0773.13003, MR 1170712, 10.1016/0022-4049(92)90144-5
Reference: [2] Chapman, S. T., Halter-Koch, F., Krause, U.: Inside factorial monoids and integral domains.J. Algebra 252 (2002), 350-375. Zbl 1087.13510, MR 1925142, 10.1016/S0021-8693(02)00031-5
Reference: [3] Chapman, S. T., Krause, U.: Cale monoids, Cale domains, and Cale varieties.Arithmetical properties of commutative rings and monoids. Boca Raton, FL: Chapman & Hall/CRC. Lecture Notes in Pure and Applied Mathematics 241 142-171 (2005). Zbl 1100.20040, MR 2140690
Reference: [4] Halter-Koch, F.: Ideal Systems. An Introduction to Multiplicative Ideal Theory.Pure and Applied Mathematics, Marcel Dekker. 211. New York (1998). Zbl 0953.13001, MR 1828371
Reference: [5] Krause, U.: Eindeutige Faktorisierung ohne ideale Elemente.Abh. Braunschw. Wiss. Ges. 33 (1982), 169-177 German. Zbl 0518.20062, MR 0693175
Reference: [6] Krause, U.: A characterization of algebraic number fields with cyclic class group of prime power order.Math. Z. 186 (1984), 143-148. Zbl 0522.12006, MR 0741299, 10.1007/BF01161801
Reference: [7] Krause, U.: Semigroups that are factorial from inside or from outside.Lattices, semigroups, and universal algebra, Proc. Int. Conf., Lisbon/Port. 1988 147-161 (1990). Zbl 0736.20039, MR 1085077
Reference: [8] Maney, J., Ponomarenko, V.: Diversity in monoids.Czech. Math. J 62 (2012), 795-809. MR 2984635, 10.1007/s10587-012-0046-1
Reference: [9] Valenza, R. J.: Elasticity of factorization in number fields.J. Number Theory 36 (1990), 212-218. Zbl 0721.11043, MR 1072466, 10.1016/0022-314X(90)90074-2
.

Files

Files Size Format View
CzechMathJ_62-2012-3_17.pdf 318.1Kb application/pdf View/Open
Back to standard record
Partner of
EuDML logo