Full entry |
PDF
(0.2 MB)
Feedback

graph; split graph; degree sequence

References:

[1] Hakimi, S. L.: **On realizability of a set of integers as degrees of the vertices of a linear graph. I**. J. Soc. Ind. Appl. Math. 10 (1962), 496-506. DOI 10.1137/0110037 | MR 0148049 | Zbl 0168.44705

[2] Havel, V.: **A remark on the existence of finite graphs**. Čas. Mat. 80 (1955), 477-480 Czech. Zbl 0068.37202

[3] Lai, C. H., Hu, L. L.: **Potentially $K_m-G$-graphical sequences: a survey**. Czech. Math. J. 59 (2009), 1059-1075. DOI 10.1007/s10587-009-0074-7 | MR 2563577 | Zbl 1224.05105

[4] Rao, A. R.: **The clique number of a graph with a given degree sequence**. Graph theory, Proc. Symp., Calcutta 1976, ISI Lect. Notes 4 (1979), 251-267. MR 0553948 | Zbl 0483.05038

[5] Rao, A. R.: **An Erdős-Gallai type result on the clique number of a realization of a degree sequence**. Unpublished.

[6] Yin, J. H.: **A Rao-type characterization for a sequence to have a realization containing a split graph**. Discrete Math. 311 (2011), 2485-2489. DOI 10.1016/j.disc.2011.07.024 | MR 2832147 | Zbl 1238.05063