| Title:
             | 
The $M_\alpha $ and $C$-integrals (English) | 
| Author:
             | 
Park, Jae Myung | 
| Author:
             | 
Ryu, Hyung Won | 
| Author:
             | 
Lee, Hoe Kyoung | 
| Author:
             | 
Lee, Deuk Ho | 
| Language:
             | 
English | 
| Journal:
             | 
Czechoslovak Mathematical Journal | 
| ISSN:
             | 
0011-4642 (print) | 
| ISSN:
             | 
1572-9141 (online) | 
| Volume:
             | 
62 | 
| Issue:
             | 
4 | 
| Year:
             | 
2012 | 
| Pages:
             | 
869-878 | 
| Summary lang:
             | 
English | 
| . | 
| Category:
             | 
math | 
| . | 
| Summary:
             | 
In this paper, we define the $M_\alpha $-integral of real-valued functions defined on an interval $[a,b]$ and investigate important properties of the $M_{\alpha }$-integral. In particular, we show that a function $f\colon [a,b]\rightarrow R$ is $M_{\alpha }$-integrable on $[a,b]$ if and only if there exists an $ACG_{\alpha }$ function $F$ such that $F'=f$ almost everywhere on $[a,b]$. It can be seen easily that every McShane integrable function on $[a,b]$ is $M_{\alpha }$-integrable and every $M_{\alpha }$-integrable function on $[a,b]$ is Henstock integrable. In addition, we show that the $M_{\alpha }$-integral is equivalent to the $C$-integral. (English) | 
| Keyword:
             | 
$M_\alpha $-integral | 
| Keyword:
             | 
$ACG_\alpha $ function | 
| MSC:
             | 
26A39 | 
| idZBL:
             | 
Zbl 1274.26016 | 
| idMR:
             | 
MR3010244 | 
| DOI:
             | 
10.1007/s10587-012-0070-1 | 
| . | 
| Date available:
             | 
2012-11-10T21:25:01Z | 
| Last updated:
             | 
2020-07-03 | 
| Stable URL:
             | 
http://hdl.handle.net/10338.dmlcz/143031 | 
| . | 
| Reference:
             | 
[1] Bongiorno, B., Piazza, L. Di, Preiss, D.: A constructive minimal integral which includes Lebesgue integrable functions and derivatives.J. Lond. Math. Soc., II. Ser. 62 (2000), 117-126. Zbl 0980.26006, MR 1771855, 10.1112/S0024610700008905 | 
| Reference:
             | 
[2] Bruckner, A. M., Fleissner, R. J., Fordan, J.: The minimal integral which includes Lebesgue integrable functions and derivatives.Colloq. Math. 50 (1986), 289-293. MR 0857865, 10.4064/cm-50-2-289-293 | 
| Reference:
             | 
[3] Piazza, L. Di: A Riemann-type minimal integral for the classical problem of primitives.Rend. Istit. Mat. Univ. Trieste 34 (2002), 143-153. Zbl 1047.26005, MR 2013947 | 
| Reference:
             | 
[4] Gordon, R. A.: The Integrals of Lebegue, Denjoy, Perron, and Henstock.Graduate Studies in Mathematics 4 American Mathematical Society (1994). MR 1288751, 10.1090/gsm/004/09 | 
| . |