Previous |  Up |  Next

Article

Title: The $M_\alpha $ and $C$-integrals (English)
Author: Park, Jae Myung
Author: Ryu, Hyung Won
Author: Lee, Hoe Kyoung
Author: Lee, Deuk Ho
Language: English
Journal: Czechoslovak Mathematical Journal
ISSN: 0011-4642 (print)
ISSN: 1572-9141 (online)
Volume: 62
Issue: 4
Year: 2012
Pages: 869-878
Summary lang: English
.
Category: math
.
Summary: In this paper, we define the $M_\alpha $-integral of real-valued functions defined on an interval $[a,b]$ and investigate important properties of the $M_{\alpha }$-integral. In particular, we show that a function $f\colon [a,b]\rightarrow R$ is $M_{\alpha }$-integrable on $[a,b]$ if and only if there exists an $ACG_{\alpha }$ function $F$ such that $F'=f$ almost everywhere on $[a,b]$. It can be seen easily that every McShane integrable function on $[a,b]$ is $M_{\alpha }$-integrable and every $M_{\alpha }$-integrable function on $[a,b]$ is Henstock integrable. In addition, we show that the $M_{\alpha }$-integral is equivalent to the $C$-integral. (English)
Keyword: $M_\alpha $-integral
Keyword: $ACG_\alpha $ function
MSC: 26A39
idZBL: Zbl 1274.26016
idMR: MR3010244
DOI: 10.1007/s10587-012-0070-1
.
Date available: 2012-11-10T21:25:01Z
Last updated: 2020-07-03
Stable URL: http://hdl.handle.net/10338.dmlcz/143031
.
Reference: [1] Bongiorno, B., Piazza, L. Di, Preiss, D.: A constructive minimal integral which includes Lebesgue integrable functions and derivatives.J. Lond. Math. Soc., II. Ser. 62 (2000), 117-126. Zbl 0980.26006, MR 1771855, 10.1112/S0024610700008905
Reference: [2] Bruckner, A. M., Fleissner, R. J., Fordan, J.: The minimal integral which includes Lebesgue integrable functions and derivatives.Colloq. Math. 50 (1986), 289-293. MR 0857865, 10.4064/cm-50-2-289-293
Reference: [3] Piazza, L. Di: A Riemann-type minimal integral for the classical problem of primitives.Rend. Istit. Mat. Univ. Trieste 34 (2002), 143-153. Zbl 1047.26005, MR 2013947
Reference: [4] Gordon, R. A.: The Integrals of Lebegue, Denjoy, Perron, and Henstock.Graduate Studies in Mathematics 4 American Mathematical Society (1994). MR 1288751, 10.1090/gsm/004/09
.

Files

Files Size Format View
CzechMathJ_62-2012-4_1.pdf 253.2Kb application/pdf View/Open
Back to standard record
Partner of
EuDML logo