Previous |  Up |  Next

Article

Title: On nonuniform dichotomy for stochastic skew-evolution semiflows in Hilbert spaces (English)
Author: Stoica, Diana
Author: Megan, Mihail
Language: English
Journal: Czechoslovak Mathematical Journal
ISSN: 0011-4642 (print)
ISSN: 1572-9141 (online)
Volume: 62
Issue: 4
Year: 2012
Pages: 879-887
Summary lang: English
.
Category: math
.
Summary: In this paper we study a general concept of nonuniform exponential dichotomy in mean square for stochastic skew-evolution semiflows in Hilbert spaces. We obtain a variant for the stochastic case of some well-known results, of the deterministic case, due to R. Datko: Uniform asymptotic stability of evolutionary processes in a Banach space, SIAM J. Math. Anal., 3(1972), 428–445. Our approach is based on the extension of some techniques used in the deterministic case for the study of asymptotic behavior of skew-evolution semiflows in Banach spaces. (English)
Keyword: stochastic skew-evolution semiflow
Keyword: nonuniform exponential dichotomy in mean square
MSC: 37L55
MSC: 60H25
MSC: 93E15
idZBL: Zbl 1274.37044
idMR: MR3010245
DOI: 10.1007/s10587-012-0071-0
.
Date available: 2012-11-10T21:26:23Z
Last updated: 2020-07-03
Stable URL: http://hdl.handle.net/10338.dmlcz/143033
.
Reference: [1] Arnold, L.: Stochastic Differential Equations: Theory and Applications.A Wiley-Interscience Publication. New York etc.: John Wiley & Sons (1974). Zbl 0278.60039, MR 0443083
Reference: [2] Ateiwi, A. M.: About bounded solutions of linear stochastic Ito systems.Miskolc Math. Notes 3 (2002), 3-12 MR 1921482, 10.18514/MMN.2002.46
Reference: [3] Bensoussan, A., Flandoli, F.: Stochastic inertial manifold.Stochastics and Stochastics Reports 53 (1995), 13-39. Zbl 0854.60059, MR 1380488, 10.1080/17442509508833981
Reference: [4] Buse, C., Barbu, D.: The Lyapunov equations and nonuniform exponential stability.Stud. Cerc. Mat. 49 (1997), 25-31. Zbl 0893.93031, MR 1671501
Reference: [5] Caraballo, T., Duan, J., Lu, K., Schmalfuss, B.: Invariant manifolds for random and stochastic partial differential equations.Adv. Nonlinear Stud. 10 (2010), 23-52. Zbl 1209.37094, MR 2574373, 10.1515/ans-2010-0102
Reference: [6] Prato, G. Da, Ichikawa, A.: Lyapunov equations for time-varying linear systems.Systems Control Lett. 9 (1987), 165-172. Zbl 0678.93051, MR 0906236, 10.1016/0167-6911(87)90023-5
Reference: [7] Prato, G. Da, Zabczyk, J.: Stochastic Equations in Infinite Dimensions.Encyclopedia of Mathematics and Its Applications. 44 Cambridge etc. Cambridge University Press (1992). Zbl 0761.60052, MR 1207136
Reference: [8] Datko, R.: Uniform asymptotic stability of evolutionary processes in a Banach space.SIAM J. Math. Anal. 3 (1972), 428-445. Zbl 0241.34071, MR 0320465, 10.1137/0503042
Reference: [9] Flandoli, F.: Stochastic flows for nonlinear second-order parabolic SPDE.Ann. Probab. 24 (1996), 547-558. Zbl 0870.60056, MR 1404520, 10.1214/aop/1039639354
Reference: [10] Lemle, L. D., Wu, L.: Uniqueness of $C_{0}$-semigroups on a general locally convex vector space and an application.Semigroup Forum 82 (2011), 485-496. Zbl 1227.47026, MR 2796039, 10.1007/s00233-010-9285-3
Reference: [11] Lupa., N., Megan, M., Popa, I. L.: On weak exponential stability of evolution operators in Banach spaces.Nonlinear Anal., Theory Methods Appl., Ser. A, Theory Methods 73 (2010), 2445-2450. Zbl 1218.47065, MR 2674082, 10.1016/j.na.2010.06.017
Reference: [12] Megan, M., Sasu, A. L., Sasu, B.: Nonuniform exponential unstability of evolution operators in Banach spaces.Glas. Mat., III. Ser. 36 (2001), 287-295. Zbl 1008.34053, MR 1884449
Reference: [13] Mohammed, S. - E. A., Zhang, T., Zhao, H.: The stable manifold theorem for semilinear stochastic evolution equations and stochastic partial differential equations.Mem. Am. Math. Soc. 196 (2008), 1-105. Zbl 1169.60014, MR 2459571
Reference: [14] Skorohod, A. V.: Random Linear Operators, Transl. from the Russian.Mathematics and Its Applications. Soviet Series., D. Reidel Publishing Company, Dordrecht, Boston, Lancaster (1984). MR 0733994
Reference: [15] Stoica, C., Megan, M.: Nonuniform behaviors for skew-evolution semiflows in Banach spaces.Operator theory live. Proceedings of the 22nd international conference on operator theory, Timişoara, Romania, July 3-8, 2008. Bucharest: The Theta Foundation. Theta Series in Advanced Mathematics 12 (2010), 203-211. MR 2731875
Reference: [16] Stoica, D.: Uniform exponential dichotomy of stochastic cocycles.Stochastic Process. Appl. 12 (2010), 1920-1928. Zbl 1201.60060, MR 2673981, 10.1016/j.spa.2010.05.016
.

Files

Files Size Format View
CzechMathJ_62-2012-4_2.pdf 244.6Kb application/pdf View/Open
Back to standard record
Partner of
EuDML logo