Title:
|
Essential normality for certain finite linear combinations of linear-fractional composition operators on the Hardy space $H^{2}$ (English) |
Author:
|
Fatehi, Mahsa |
Author:
|
Robati, Bahram Khani |
Language:
|
English |
Journal:
|
Czechoslovak Mathematical Journal |
ISSN:
|
0011-4642 (print) |
ISSN:
|
1572-9141 (online) |
Volume:
|
62 |
Issue:
|
4 |
Year:
|
2012 |
Pages:
|
901-917 |
Summary lang:
|
English |
. |
Category:
|
math |
. |
Summary:
|
In 1999 Nina Zorboska and in 2003 P. S. Bourdon, D. Levi, S. K. Narayan and J. H. Shapiro investigated the essentially normal composition operator $C_{\varphi }$, when $\varphi $ is a linear-fractional self-map of $\mathbb {D}$. In this paper first, we investigate the essential normality problem for the operator $T_{w}C_{\varphi }$ on the Hardy space $H^{2}$, where $w$ is a bounded measurable function on $\partial \mathbb {D}$ which is continuous at each point of $F(\varphi )$, $\varphi \in {\cal S}(2)$, and $T_{w}$ is the Toeplitz operator with symbol $w$. Then we use these results and characterize the essentially normal finite linear combinations of certain linear-fractional composition operators on $H^{2}$. (English) |
Keyword:
|
Hardy spaces |
Keyword:
|
essentially normal |
Keyword:
|
composition operator |
Keyword:
|
linear-fractional transformation |
MSC:
|
30H10 |
MSC:
|
46E20 |
MSC:
|
47B33 |
MSC:
|
47B35 |
idZBL:
|
Zbl 1262.47052 |
idMR:
|
MR3010247 |
DOI:
|
10.1007/s10587-012-0073-y |
. |
Date available:
|
2012-11-10T21:29:34Z |
Last updated:
|
2020-07-03 |
Stable URL:
|
http://hdl.handle.net/10338.dmlcz/143035 |
. |
Reference:
|
[1] Aleksandrov, A. B.: Multiplicity of boundary values of inner functions.Izv. Akad. Nauk Arm. SSR, Ser. Mat. 22 (1987), 490-503. Zbl 0648.30002, MR 0931885 |
Reference:
|
[2] Bourdon, P. S.: Components of linear-fractional composition operators.J. Math. Anal. Appl. 279 (2003), 228-245. Zbl 1043.47021, MR 1970503, 10.1016/S0022-247X(03)00004-0 |
Reference:
|
[3] Bourdon, P. S., Levi, D., Narayan, S. K., Shapiro, J. H.: Which linear-fractional composition operators are essentially normal?.J. Math. Anal. Appl. 280 (2003), 30-53. Zbl 1024.47008, MR 1972190, 10.1016/S0022-247X(03)00005-2 |
Reference:
|
[4] Chacón, G. A., Chacón, G. R.: Some properties of composition operators on the Dirichlet space.Acta Math. Univ. Comen., New Ser. 74 (2005), 259-272. Zbl 1151.47033, MR 2195485 |
Reference:
|
[5] Clark, D. N.: One-dimensional perturbations of restricted shifts.J. Anal. Math. 25 (1972), 169-191. Zbl 0252.47010, MR 0301534, 10.1007/BF02790036 |
Reference:
|
[6] Cowen, C. C.: Linear fractional composition operators on $H^{2}$.Integral Equations Oper. Theory 11 (1988), 151-160. MR 0928479, 10.1007/BF01272115 |
Reference:
|
[7] Cowen, C. C., MacCluer, B. D.: Composition Operators on Spaces of Analytic Functions.CRC Press Boca Raton (1995). Zbl 0873.47017, MR 1397026 |
Reference:
|
[8] Duren, P. L.: Theory of $H^{p}$ Spaces.Academic Press New York (1970). MR 0268655 |
Reference:
|
[9] Heller, K., MacCluer, B. D., Weir, R. J.: Compact differences of composition operators in several variables.Integral Equations Oper. Theory 69 (2011), 247-268. Zbl 1241.47022, MR 2765588, 10.1007/s00020-010-1840-5 |
Reference:
|
[10] Kriete, T. L., MacCluer, B. D., Moorhouse, J. L.: Toeplitz-composition $C^{\ast}$-algebras.J. Oper. Theory 58 (2007), 135-156. Zbl 1134.47303, MR 2336048 |
Reference:
|
[11] Kriete, T. L., Moorhouse, J. L.: Linear relations in the Calkin algebra for composition operators.Trans. Am. Math. Soc. 359 (2007), 2915-2944. Zbl 1115.47023, MR 2286063, 10.1090/S0002-9947-07-04166-9 |
Reference:
|
[12] MacCluer, B. D., Weir, R. J.: Essentially normal composition operators on Bergman spaces.Acta Sci. Math. 70 (2004), 799-817. Zbl 1087.47031, MR 2107542 |
Reference:
|
[13] MacCluer, B. D., Weir, R. J.: Linear-fractional composition operators in several variables.Integral Equations Oper. Theory 53 (2005), 373-402. Zbl 1121.47017, MR 2186097, 10.1007/s00020-005-1372-6 |
Reference:
|
[14] Moorhouse, J.: Compact differences of composition operators.J. Funct. Anal. 219 (2005), 70-92. Zbl 1087.47032, MR 2108359, 10.1016/j.jfa.2004.01.012 |
Reference:
|
[15] Poltoratski, A. G.: The boundary behavior of pseudocontinuable functions.St. Petersb. Math. J. 5 (1994), 389-406 translation from 389-406 Algebra Anal. 5 (1993), 189-210. MR 1223178 |
Reference:
|
[16] Ryff, J. V.: Subordinate $H^{p}$ functions.Duke Math. J. 33 (1966), 347-354. MR 0192062, 10.1215/S0012-7094-66-03340-0 |
Reference:
|
[17] Sarason, D. E.: Sub-Hardy Hilbert Spaces in the Unit Disk.University of Arkansas Lecture Notes in the Mathematical Sciences, Vol. 10 John Wiley & Sons New York (1994). MR 1289670 |
Reference:
|
[18] Schwartz, H. J.: Composition operators on $H^{p}$.Ph.D. Thesis University of Toledo (1969). MR 2618707 |
Reference:
|
[19] Shapiro, J. H.: Composition Operators and Classical Function Theory.Springer New York (1993). Zbl 0791.30033, MR 1237406 |
Reference:
|
[20] Shapiro, J. H., Taylor, P. D.: Compact, nuclear, and Hilbert-Schmidt composition operators on $H^{2}$.Indiana Univ. Math. J. 23 (1973), 471-496. MR 0326472 |
Reference:
|
[21] Zorboska, N.: Closed range essentially normal composition operators are normal.Acta Sci. Math. 65 (1999), 287-292. Zbl 0938.47022, MR 1702203 |
. |