Previous |  Up |  Next

Article

References:
[1] Aupetit, B.: A Primer on Spectral Theory. Springer New York (1991). MR 1083349 | Zbl 0715.46023
[2] Aupetit, B., Mouton, H. du T.: Trace and determinant in Banach algebras. Stud. Math. 121 (1996), 115-136. MR 1418394 | Zbl 0872.46028
[3] Bonsall, F. F., Duncan, J.: Complete Normed Algebras. Springer New York (1973). MR 0423029 | Zbl 0271.46039
[4] Brits, R.: Perturbation and spectral discontinuity in Banach algebras. Stud. Math. 203 (2011), 253-263. DOI 10.4064/sm203-3-3 | MR 2786166
[5] a, I. Colojoar\v, Foiaş, C.: Quasi-nilpotent equivalence of not necessarily commuting operators. J. Math. Mech. 15 (1966), 521-540. MR 0192344
[6] a, I. Colojoar\v, Foiaş, C.: Theory of Generalized Spectral Operators. Mathematics and its Applications. 9 New York-London-Paris: Gordon and Breach Science Publishers (1968). MR 0394282
[7] Foiaş, C., Vasilescu, F.-H.: On the spectral theory of commutators. J. Math. Anal. Appl. 31 (1970), 473-486. DOI 10.1016/0022-247X(70)90001-6 | MR 0290146
[8] Harte, R.: On rank one elements. Stud. Math. 117 (1995), 73-77. DOI 10.4064/sm-117-1-73-77 | MR 1367694 | Zbl 0837.46036
[9] Mouton, S., Raubenheimer, H.: More spectral theory in ordered Banach algebras. Positivity 1 (1997), 305-317. DOI 10.1023/A:1009717500980 | MR 1660397 | Zbl 0904.46036
[10] Müller, V.: Spectral Theory of Linear Operators and Spectral Systems in Banach Algebras. Operator Theory: Advances and Applications Basel: Birkhäuser (2003). MR 1975356
[11] Puhl, J.: The trace of finite and nuclear elements in Banach algebras. Czech. Math. J. 28 (1978), 656-676. MR 0506439 | Zbl 0394.46041
[12] Raubenheimer, H.: On quasinilpotent equivalence in Banach algebras. Czech. Math. J. 60 (2010), 589-596. DOI 10.1007/s10587-010-0045-z | MR 2672403
[13] Razpet, M.: The quasinilpotent equivalence in Banach algebras. J. Math. Anal. Appl. 166 (1992), 378-385. DOI 10.1016/0022-247X(92)90304-V | MR 1160933 | Zbl 0802.46064
Partner of
EuDML logo