[1] Borovićanin, B., Petrović, M.:
On the index of cactuses with $n$ vertices. Publ. Inst. Math., Nouv. Sér. 79(93) (2006), 13-18.
DOI 10.2298/PIM0693013B |
MR 2275334
[3] Cvetković, D., Simić, S. K.:
Towards a spectral theory of graphs based on the signless Laplacian II. Linear Algebra Appl. 432 (2010), 2257-2272.
MR 2599858 |
Zbl 1218.05089
[4] Dam, E. R. van, Haemers, W. H.:
Which graphs are determined by their spectrum?. Linear Algebra Appl. 373 (2003), 241-272.
MR 2022290
[7] Doob, M., Haemers, W. H.:
The complement of the path is determined by its spectrum. Linear Algebra Appl. 356 (2002), 57-65.
MR 1944676 |
Zbl 1015.05047
[9] Du, Z. B., Zhou, B.:
Minimum on Wiener indices of trees and unicyclic graphs of the given matching number. MATCH Commun. Math. Comput. Chem. 63 (2010), 101-112.
MR 2582967
[11] Guo, J. M.:
The effect on the Laplacian spectral radius of a graph by adding or grafting edges. Linear Algebra Appl. 413 (2006), 59-71.
MR 2202092 |
Zbl 1082.05059
[12] Haemers, W. H.:
Interlacing eigenvalues and graphs. Linear Algebra Appl. 226-228 (1995), 593-616.
MR 1344588 |
Zbl 0831.05044
[13] Heuvel, J. van den:
Hamilton cycles and eigenvalues of graphs. Linear Algebra Appl. 226-228 (1995), 723-730.
MR 1344594
[14] Horn, R. A., Johnson, C. R.:
Matrix Analysis. Cambridge University Press XIII, Cambridge (1985).
MR 0832183 |
Zbl 0576.15001
[17] Li, S. C., Zhang, M. J.:
On the signless Laplacian index of cacti with a given number of pendant vertices. Linear Algebra Appl. 436 (2012), 4400-4411.
MR 2917417 |
Zbl 1241.05082
[18] Liu, B. L.: Combinatorial Matrix Theory. Science Press, Beijing (2005), Chinese.
[19] Liu, H. Q., Lu, M.:
A unified approach to extremal cacti for different indices. MATCH Commun. Math. Comput. Chem. 58 (2007), 183-194.
MR 2335488 |
Zbl 1164.05043
[21] Liu, M. H., Liu, B. L., Wei, F. Y.:
Graphs determined by their (signless) Laplacian spectra. Electron. J. Linear Algebra 22 (2011), 112-124.
MR 2781040 |
Zbl 1227.05185
[24] Merris, R.:
Laplacian matrices of graphs: A survey. Linear Algebra Appl. 197-198 (1994), 143-176.
MR 1275613 |
Zbl 0802.05053
[25] Pan, Y. L.:
Sharp upper bounds for the Laplacian graph eigenvalues. Linear Algebra Appl. 355 (2002), 287-295.
MR 1930150 |
Zbl 1015.05055
[26] Radosavljević, Z., sajski, M. Ra\u:
A class of reflexive cactuses with four cycles. Publ. Elektroteh. Fak., Univ. Beogr., Ser. Mat. 14 (2003), 64-85.
MR 2076310
[27] Shen, X. L., Hou, Y. P.:
A class of unicyclic graphs determined by their Laplacian spectrum. Electron. J. Linear Algebra. 23 (2012), 375-386.
MR 2928565
[28] Yu, G. H., Feng, L. H., Ilić, A.:
The hyper-Wiener index of trees with given parameters. Ars Comb. 96 (2010), 395-404.
MR 2666825 |
Zbl 1247.92068