Full entry |
PDF
(0.4 MB)
Feedback

minimum $\phi $-divergence estimation; subdivergence; superdivergence; PC simulation; relative efficiency; robustness

References:

[1] M. Broniatowski, A. Keziou: **Minimization of $\phi $-divergences on sets of signed measures**. Studia Sci. Math. Hungar. 43 (2006), 403-442. MR 2273419 | Zbl 1121.28004

[2] M. Broniatowski, A. Keziou: **Parametric estimation and tests through divergences and the duality technique**. J. Multivariate Anal. 100 (2009), 16-36. DOI 10.1016/j.jmva.2008.03.011 | MR 2460474 | Zbl 1151.62023

[3] M. Broniatowski, I. Vajda: **Several Applications of Divergence Criteria in Continuous Families**. Research Report No. 2257. Institute of Information Theory and Automation, Prague 2009.

[4] I. Frýdlová: **Minimum Kolmogorov Distance Estimators**. Diploma Thesis. Czech Technical University, Prague 2004.

[5] I. Frýdlová: **Modified Power Divergence Estimators and Their Performances in Normal Models**. In: Proc. FernStat2010, Faculty of Social and Economic Studies UJEP, Ústí n. L. 2010, 28-33.

[6] F. Liese, I. Vajda: **On divergences and informations in statistics and information theory**. IEEE Trans. Inform. Theory 52 (2006), 4394-4412. DOI 10.1109/TIT.2006.881731 | MR 2300826

[7] A. Toma, S. Leoni-Aubin: **Robust tests based on dual divergence estimators and saddlepoint approximations**. J. Multivariate Anal. 101 (2010), 1143-1155. DOI 10.1016/j.jmva.2009.11.001 | MR 2595297 | Zbl 1185.62042

[8] A. Toma, M. Broniatowski: **Dual divergence estimators and tests: Robustness results**. J. Multivariate Analysis 102 (2011), 20-36. DOI 10.1016/j.jmva.2010.07.010 | MR 2729417 | Zbl 1206.62034

[9] I. Vajda: **Theory of Statistical Inference and Information**. Kluwer, Boston 1989. Zbl 0711.62002