Previous |  Up |  Next

Article

Title: Modified power divergence estimators in normal models – simulation and comparative study (English)
Author: Frýdlová, Iva
Author: Vajda, Igor
Author: Kůs, Václav
Language: English
Journal: Kybernetika
ISSN: 0023-5954
Volume: 48
Issue: 4
Year: 2012
Pages: 795-808
Summary lang: English
.
Category: math
.
Summary: Point estimators based on minimization of information-theoretic divergences between empirical and hypothetical distribution induce a problem when working with continuous families which are measure-theoretically orthogonal with the family of empirical distributions. In this case, the $\phi$-divergence is always equal to its upper bound, and the minimum $\phi$-divergence estimates are trivial. Broniatowski and Vajda [3] proposed several modifications of the minimum divergence rule to provide a solution to the above mentioned problem. We examine these new estimation methods with respect to consistency, robustness and efficiency through an extended simulation study. We focus on the well-known family of power divergences parametrized by $\alpha \in \mathbb{R}$ in the Gaussian model, and we perform a comparative computer simulation for several randomly selected contaminated and uncontaminated data sets, different sample sizes and different $\phi$-divergence parameters. (English)
Keyword: minimum $\phi $-divergence estimation
Keyword: subdivergence
Keyword: superdivergence
Keyword: PC simulation
Keyword: relative efficiency
Keyword: robustness
MSC: 62B05
MSC: 62H30
idMR: MR3013399
.
Date available: 2012-11-10T22:09:24Z
Last updated: 2013-09-24
Stable URL: http://hdl.handle.net/10338.dmlcz/143060
.
Reference: [1] M. Broniatowski, A. Keziou: Minimization of $\phi $-divergences on sets of signed measures..Studia Sci. Math. Hungar. 43 (2006), 403-442. Zbl 1121.28004, MR 2273419
Reference: [2] M. Broniatowski, A. Keziou: Parametric estimation and tests through divergences and the duality technique..J. Multivariate Anal. 100 (2009), 16-36. Zbl 1151.62023, MR 2460474, 10.1016/j.jmva.2008.03.011
Reference: [3] M. Broniatowski, I. Vajda: Several Applications of Divergence Criteria in Continuous Families..Research Report No. 2257. Institute of Information Theory and Automation, Prague 2009.
Reference: [4] I. Frýdlová: Minimum Kolmogorov Distance Estimators..Diploma Thesis. Czech Technical University, Prague 2004.
Reference: [5] I. Frýdlová: Modified Power Divergence Estimators and Their Performances in Normal Models..In: Proc. FernStat2010, Faculty of Social and Economic Studies UJEP, Ústí n. L. 2010, 28-33.
Reference: [6] F. Liese, I. Vajda: On divergences and informations in statistics and information theory..IEEE Trans. Inform. Theory 52 (2006), 4394-4412. MR 2300826, 10.1109/TIT.2006.881731
Reference: [7] A. Toma, S. Leoni-Aubin: Robust tests based on dual divergence estimators and saddlepoint approximations..J. Multivariate Anal. 101 (2010), 1143-1155. Zbl 1185.62042, MR 2595297, 10.1016/j.jmva.2009.11.001
Reference: [8] A. Toma, M. Broniatowski: Dual divergence estimators and tests: Robustness results..J. Multivariate Analysis 102 (2011), 20-36. Zbl 1206.62034, MR 2729417, 10.1016/j.jmva.2010.07.010
Reference: [9] I. Vajda: Theory of Statistical Inference and Information..Kluwer, Boston 1989. Zbl 0711.62002
.

Files

Files Size Format View
Kybernetika_48-2012-4_9.pdf 405.5Kb application/pdf View/Open
Back to standard record
Partner of
EuDML logo